Space and Atmospheric Sciences Division, Physical Research Laboratory, Navrangpura, Ahmedabad, Gujarat 380009, India.
Environ Sci Pollut Res Int. 2012 Jul;19(6):2159-71. doi: 10.1007/s11356-011-0715-x. Epub 2012 Jan 10.
Aerosol radiative effects over two environmentally distinct locations, Kanpur (urban site) and Gandhi College (rural location) in the Indo-Gangetic plain (IGP), a regional aerosol hot spot, utilizing the measured optical and physical characteristics of aerosols, an aerosol optical properties model and a radiative transfer model, are examined. Shortwave aerosol radiative forcing (ARF) at the top of the atmosphere (TOA) is < -12 W m( - 2) over Kanpur and Gandhi College. ARF at the surface is ≥ -30 W m( - 2). Atmospheric warming is maximum during premonsoon (>30 W m( - 2)). Shortwave atmospheric heating due to aerosols is >0.4 K/day over IGP and peaks during premonsoon at >0.6 K/day due to lower single scattering albedo (SSA) and higher surface albedo. TOA forcing is always less negative over Kanpur when compared to Gandhi College due to lower surface albedo except in postmonsoon owing to higher SSA. This happens as TOA forcing depends on SSA and surface albedo in addition to aerosol optical depth. The magnitude of longwave forcing and atmospheric cooling in an absolute sense is significantly small and contributes only about 20% or less to the net (shortwave + longwave) forcing. Aerosol radiative effects over these two locations, despite differences in aerosol characteristics, are similar, thus confirming that aerosols and their radiative influence get transported due to circulation. ARF over Kanpur and Gandhi College is an order of magnitude higher when compared to greenhouse gas forcing. A large reduction in surface reaching solar irradiance accompanied by large atmospheric warming can have implications on precipitation and hydrological cycle, and these aerosol radiative effects should be included while performing regional-scale aerosol climate assessments.
利用气溶胶的实测光学和物理特性、气溶胶光学特性模型和辐射传输模型,研究了印度-恒河平原(IGP)两个具有不同环境特征的地点,坎普尔(城市地点)和甘地学院(农村地点)的气溶胶辐射效应。在坎普尔和甘地学院,大气顶的短波气溶胶辐射强迫(ARF)小于-12 W m(-2)。地表的 ARF 大于-30 W m(-2)。在季风前,大气变暖最大(>30 W m(-2))。由于气溶胶的存在,IGP 地区的大气短波加热率大于 0.4 K/天,在季风前达到峰值,超过 0.6 K/天,这是由于较低的单次散射反照率(SSA)和较高的地表反照率。由于地表反照率较低,除了在季风后期,坎普尔的 TOA 强迫总是比甘地学院小,而在季风后期,由于 SSA 较高,TOA 强迫则相反。这是因为 TOA 强迫不仅取决于气溶胶光学厚度,还取决于 SSA 和地表反照率。从绝对意义上讲,长波强迫和大气冷却的幅度很小,对净(短波+长波)强迫的贡献仅约 20%或更少。尽管气溶胶特性存在差异,但这两个地点的气溶胶辐射效应相似,这证实了气溶胶及其辐射影响是由于环流而传输的。与温室气体强迫相比,坎普尔和甘地学院的 ARF 要高出一个数量级。伴随着大气变暖的大量太阳辐射到达地表的减少,可能对降水和水文循环产生影响,在进行区域尺度的气溶胶气候评估时,应该考虑这些气溶胶辐射效应。