Comprehensive Cancer Imaging Centre at Imperial College, Faculty of Medicine, Imperial College London, United Kingdom.
Clin Cancer Res. 2012 Feb 15;18(4):1063-72. doi: 10.1158/1078-0432.CCR-11-2462. Epub 2012 Jan 10.
(11)C-Choline-positron emission tomography (PET) has been exploited to detect the aberrant choline metabolism in tumors. Radiolabeled choline uptake within the imaging time is primarily a function of transport, phosphorylation, and oxidation. Rapid choline oxidation, however, complicates interpretation of PET data. In this study, we investigated the biologic basis of the oxidation of deuterated choline analogs and assessed their specificity in human tumor xenografts.
(11)C-Choline, (11)C-methyl-[1,2-(2)H(4)]-choline ((11)C-D4-choline), and (18)F-D4-choline were synthesized to permit comparison. Biodistribution, metabolism, small-animal PET studies, and kinetic analysis of tracer uptake were carried out in human colon HCT116 xenograft-bearing mice.
Oxidation of choline analogs to betaine was highest with (11)C-choline, with reduced oxidation observed with (11)C-D4-choline and substantially reduced with (18)F-D4-choline, suggesting that both fluorination and deuteration were important for tracer metabolism. Although all tracers were converted intracellularly to labeled phosphocholine (specific signal), the higher rate constants for intracellular retention (K(i) and k(3)) of (11)C-choline and (11)C-D4-choline, compared with (18)F-D4-choline, were explained by the rapid conversion of the nonfluorinated tracers to betaine within HCT116 tumors. Imaging studies showed that the uptake of (18)F-D4-choline in three tumors with similar radiotracer delivery (K(1)) and choline kinase α expression-HCT116, A375, and PC3-M-were the same, suggesting that (18)F-D4-choline has utility for cancer detection irrespective of histologic type.
We have shown here that both deuteration and fluorination combine to provide protection against choline oxidation in vivo. (18)F-D4-choline showed the highest selectivity for phosphorylation and warrants clinical evaluation.
(11)C-胆碱正电子发射断层扫描(PET)已被用于检测肿瘤中异常的胆碱代谢。在成像时间内放射性标记的胆碱摄取主要是运输、磷酸化和氧化的功能。然而,胆碱的快速氧化使 PET 数据的解释复杂化。在这项研究中,我们研究了氘代胆碱类似物氧化的生物学基础,并评估了它们在人肿瘤异种移植物中的特异性。
合成了(11)C-胆碱、(11)C-甲基-[1,2-(2)H(4)]-胆碱((11)C-D4-胆碱)和(18)F-D4-胆碱,以进行比较。在携带人结肠 HCT116 异种移植物的小鼠中进行了示踪剂摄取的生物分布、代谢、小动物 PET 研究和动力学分析。
(11)C-胆碱对胆碱类似物氧化为甜菜碱的作用最大,(11)C-D4-胆碱的氧化作用降低,(18)F-D4-胆碱的氧化作用显著降低,表明氟化和氘化对示踪剂代谢都很重要。尽管所有示踪剂都在细胞内转化为标记的磷酸胆碱(特异信号),但(11)C-胆碱和(11)C-D4-胆碱的细胞内保留率常数(K(i)和 k(3))较高,与(18)F-D4-胆碱相比,这可以解释为非氟化示踪剂在 HCT116 肿瘤内快速转化为甜菜碱。成像研究表明,在三个具有相似放射性示踪剂输送(K(1))和胆碱激酶α表达的肿瘤中,(18)F-D4-胆碱的摄取相同,HCT116、A375 和 PC3-M-were,这表明(18)F-D4-胆碱具有用于癌症检测的实用性,而与组织类型无关。
我们在这里表明,氘化和氟化的结合提供了体内对胆碱氧化的保护。(18)F-D4-胆碱对磷酸化的选择性最高,值得临床评价。