Suppr超能文献

上丘在微扫视和扫视产生中的参与相似性。

Similarity of superior colliculus involvement in microsaccade and saccade generation.

机构信息

Werner Reichardt Centre for Integrative Neuroscience, Paul Ehrlich Str. 17, Tuebingen, 72076 Germany.

出版信息

J Neurophysiol. 2012 Apr;107(7):1904-16. doi: 10.1152/jn.01125.2011. Epub 2012 Jan 11.

Abstract

The characteristics of microsaccades, or small fixational saccades, and their influence on visual function have been studied extensively. However, the detailed mechanisms for generating these movements are less understood. We recently found that the superior colliculus (SC), a midbrain structure involved in saccade generation, also plays a role in microsaccade generation. Here we compared the dynamics of neuronal activity in the SC associated with microsaccades to those observed in this structure in association with larger voluntary saccades. We found that microsaccade-related activity in the SC is characterized by a gradual increase in firing rate starting ∼100 ms prior to microsaccade onset, a peak of neuronal discharge just after movement onset, and a subsequent gradual decrease in firing rate until ∼100 ms after movement onset. These properties were shared with saccade-related SC neurons, recorded from the same monkeys but preferring larger eye movements, suggesting that at the level of the SC the neuronal control of microsaccades is similar to that for larger voluntary saccades. We also found that neurons exhibiting microsaccade-related activity often also exhibited saccade-related activity for slightly larger movements of similar direction, suggesting a continuity of the spatial representation in the SC, in both amplitude and direction, down to the smallest movements. Our results indicate that the mechanisms controlling microsaccades may be fundamentally the same as those for larger saccades, and thus shed new light on the functional role of these eye movements and their possible influence on sensory and sensory-motor processes.

摘要

微扫视(或小定扫视)的特征及其对视觉功能的影响已经得到了广泛的研究。然而,对于产生这些运动的详细机制,人们的了解还比较有限。我们最近发现,中脑结构上丘(SC)在扫视产生中起作用,也在微扫视产生中起作用。在这里,我们比较了与微扫视相关的 SC 中神经元活动的动力学与与更大的自愿扫视相关的结构中观察到的动力学。我们发现,SC 中与微扫视相关的活动的特征是,在微扫视开始前约 100 毫秒开始,在运动开始后神经元放电峰值,随后放电率逐渐降低,直到运动开始后约 100 毫秒。这些特性与从同一猴子记录的、更喜欢更大眼球运动的 SC 神经元的扫视相关活动共享,这表明在 SC 水平上,微扫视的神经元控制与更大的自愿扫视相似。我们还发现,表现出与微扫视相关活动的神经元通常也表现出与稍大运动方向相似的扫视相关活动,这表明 SC 中的空间表示在幅度和方向上都具有连续性,一直延续到最小的运动。我们的研究结果表明,控制微扫视的机制可能与更大的扫视机制基本相同,从而为这些眼球运动的功能作用及其对感觉和感觉运动过程的可能影响提供了新的视角。

相似文献

1
Similarity of superior colliculus involvement in microsaccade and saccade generation.
J Neurophysiol. 2012 Apr;107(7):1904-16. doi: 10.1152/jn.01125.2011. Epub 2012 Jan 11.
2
Visual feature tuning of superior colliculus neural reafferent responses after fixational microsaccades.
J Neurophysiol. 2020 Jun 1;123(6):2136-2153. doi: 10.1152/jn.00077.2020. Epub 2020 Apr 29.
3
Activity of neurons in monkey superior colliculus during interrupted saccades.
J Neurophysiol. 1996 Jun;75(6):2562-80. doi: 10.1152/jn.1996.75.6.2562.
4
A neural mechanism for microsaccade generation in the primate superior colliculus.
Science. 2009 Feb 13;323(5916):940-3. doi: 10.1126/science.1166112.
5
Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
J Neurophysiol. 1996 Apr;75(4):1546-72. doi: 10.1152/jn.1996.75.4.1546.
6
Discharge of saccade-related superior colliculus neurons during saccades accompanied by vergence.
J Neurophysiol. 2003 Aug;90(2):1124-39. doi: 10.1152/jn.00877.2002.
7
Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.
J Neurophysiol. 2015 Aug;114(2):879-92. doi: 10.1152/jn.00047.2015. Epub 2015 Jun 10.
8
Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus.
J Neurophysiol. 1998 Mar;79(3):1193-209. doi: 10.1152/jn.1998.79.3.1193.
10
Instantaneous Midbrain Control of Saccade Velocity.
J Neurosci. 2018 Nov 21;38(47):10156-10167. doi: 10.1523/JNEUROSCI.0962-18.2018. Epub 2018 Oct 5.

引用本文的文献

1
Multiple groups of neurons in the superior colliculus convert value signals into saccadic vigor.
bioRxiv. 2025 Jun 25:2025.06.24.661386. doi: 10.1101/2025.06.24.661386.
2
Foveal neurons of the monkey superior colliculus signal trans-saccadic prediction errors.
PLoS Biol. 2025 Jun 23;23(6):e3003246. doi: 10.1371/journal.pbio.3003246. eCollection 2025 Jun.
3
Stimulus representations in visual cortex shaped by spatial attention and microsaccades.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2420704122. doi: 10.1073/pnas.2420704122. Epub 2025 May 27.
4
Eye Movement Indicator Difference Based on Binocular Color Fusion and Rivalry.
J Eye Mov Res. 2025 Apr 5;18(2):10. doi: 10.3390/jemr18020010. eCollection 2025 Apr.
5
Superior colliculus peri-saccadic field potentials are dominated by a visual sensory preference for the upper visual field.
iScience. 2025 Feb 13;28(3):112021. doi: 10.1016/j.isci.2025.112021. eCollection 2025 Mar 21.
9
Attentional shifts bias microsaccade direction but do not cause new microsaccades.
Commun Psychol. 2024 Oct 22;2(1):97. doi: 10.1038/s44271-024-00149-7.

本文引用的文献

1
Modulation of microsaccades in monkey during a covert visual attention task.
J Neurosci. 2011 Oct 26;31(43):15219-30. doi: 10.1523/JNEUROSCI.3106-11.2011.
3
Visual perception and saccadic eye movements.
Curr Opin Neurobiol. 2011 Aug;21(4):553-8. doi: 10.1016/j.conb.2011.05.012. Epub 2011 Jun 7.
4
Mechanisms for generating and compensating for the smallest possible saccades.
Eur J Neurosci. 2011 Jun;33(11):2101-13. doi: 10.1111/j.1460-9568.2011.07694.x.
5
Motor functions of the superior colliculus.
Annu Rev Neurosci. 2011;34:205-31. doi: 10.1146/annurev-neuro-061010-113728.
6
A circuit model for saccadic suppression in the superior colliculus.
J Neurosci. 2011 Feb 9;31(6):1949-54. doi: 10.1523/JNEUROSCI.2305-10.2011.
7
Microsaccades precisely relocate gaze in a high visual acuity task.
Nat Neurosci. 2010 Dec;13(12):1549-53. doi: 10.1038/nn.2663. Epub 2010 Oct 31.
8
Microsaccadic suppression of visual bursts in the primate superior colliculus.
J Neurosci. 2010 Jul 14;30(28):9542-7. doi: 10.1523/JNEUROSCI.1137-10.2010.
9
Fastigial oculomotor region and the control of foveation during fixation.
J Neurophysiol. 2010 Apr;103(4):1988-2001. doi: 10.1152/jn.00771.2009. Epub 2010 Feb 3.
10
Neural dynamics of saccadic suppression.
J Neurosci. 2009 Oct 7;29(40):12374-83. doi: 10.1523/JNEUROSCI.2908-09.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验