Suppr超能文献

贝叶斯方法通过使用附近地区的癌症发病率数据来预测无癌症登记地区的癌症发病率。

Bayesian approach to predicting cancer incidence for an area without cancer registration by using cancer incidence data from nearby areas.

机构信息

Cancer Registry of Catalonia - Plan for Oncology of the Catalan Government, IDIBELL, Hospital Duran i Reynals, Catalonia, Spain.

出版信息

Stat Med. 2012 May 10;31(10):978-87. doi: 10.1002/sim.4463. Epub 2012 Jan 11.

Abstract

This paper compares three different methods for performing cancer incidence prediction in an area without a cancer registry under a Bayesian framework, using linear and log-linear age-period models with either age-specific slopes or a common slope across age groups. The three methods assume that a nearby area with a cancer registration has similar incidence and mortality patterns as the area of interest without a cancer registry where the cancer incidence prediction is carried out. The three methods differ in modeling strategies: (i) modeling the incidence rate directly; (ii) modeling the ratio of the number of incident cases to that of mortality cases; and (iii) modeling the difference between the incidence rate and the mortality rate. Strategy (iii) is a new approach in this type of projection. Empirical assessment is made using real data from the cancer registry of Tarragona, Spain, to predict cancer incidence in Girona, Spain, and vice versa. Predictions of short-term (3-4 years) incidence were made for 2001 in Tarragona using observed cancer incidence and mortality data for 1994-1998 from Girona. Short-term predictions were made for 2002 in Girona using Tarragona's 1994-1998 data. Additionally, long-term (10 years) incidence rate predictions were made for 2002 in Girona using data from Tarragona for the period 1985-1992. Our results suggest that extrapolating time-trends of incidence rates minus mortality rates may have the best predictive performance overall. These methods of population-level disease-incidence prediction are highly relevant to health care planning and policy decisions.

摘要

本文在贝叶斯框架下比较了三种不同方法,用于在无癌症登记处的地区进行癌症发病率预测,这些方法使用线性和对数线性年龄-时期模型,其中包括年龄特异性斜率或跨年龄组的共同斜率。这三种方法假设附近有癌症登记处的地区与没有癌症登记处的感兴趣地区具有相似的发病率和死亡率模式,在该地区进行癌症发病率预测。这三种方法在建模策略上有所不同:(i)直接建模发病率;(ii)建模新发病例数与死亡病例数的比例;(iii)建模发病率与死亡率之间的差异。策略(iii)是这种类型预测中的一种新方法。使用来自西班牙塔拉戈纳癌症登记处的真实数据进行实证评估,以预测西班牙赫罗纳的癌症发病率,反之亦然。使用来自赫罗纳的 1994-1998 年观察到的癌症发病率和死亡率数据,对 2001 年塔拉戈纳的短期(3-4 年)发病率进行了预测。使用塔拉戈纳 1994-1998 年的数据对 2002 年赫罗纳的短期发病率进行了预测。此外,使用来自塔拉戈纳的 1985-1992 年期间的数据,对 2002 年赫罗纳的长期(10 年)发病率进行了预测。我们的结果表明,推断发病率减去死亡率的时间趋势可能具有总体最佳的预测性能。这些基于人群的疾病发病率预测方法与医疗保健规划和政策决策高度相关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验