Houbre D, Schindler P, Trifilieff E, Luu B, Duportail G
Centre de Recherches Pharmaceutiques, URA 491 du CNRS, Université Louis Pasteur, Illkirch, France.
Biochim Biophys Acta. 1990 Nov 2;1029(1):136-42. doi: 10.1016/0005-2736(90)90446-u.
The two main myelin proteolipids, PLP (30 kDa) and DM-20 (25 kDa), differ by an internal deletion in DM-20. The deleted fragment, of 35 amino acids (116-150), corresponds to the major hydrophilic domain of PLP. Fluorescence anisotropy experiments using diphenylhexatriene as a fluorescent probe were performed to detect the phase separation induced by these two proteolipids in multilamellar vesicles of binary composition. We found that in vesicles composed of 30% L-alpha-PS and 70% DPPC, the PLP boundary layer contained about 18 motionally restricted phospholipids, almost exclusively L-alpha-PS. On the contrary, the DM-20 boundary layer contained only 14 to 15 phospholipids, with a composition no different from that of the bulk vesicle. In mixtures of DMPG and DPPC, the selectivity of PLP for the acidic phospholipid DMPG was maintained, but was lower than that observed for L-alpha-PS. We assume that this selectivity of PLP stems mainly from electrostatic interactions between the charged residues of the 116-150 fragment, deleted in DM-20, and the acidic phospholipids. These results suggest that fragment 116-150 may play a specific role in the interaction of PLP with the lipid bilayer of the myelin membrane.