Deem Angela K, Li Xuan, Tyler Jessica K
Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Chromosoma. 2012 Apr;121(2):131-51. doi: 10.1007/s00412-011-0358-1. Epub 2012 Jan 17.
Inefficient and inaccurate repair of DNA damage is the principal cause of DNA mutations, chromosomal aberrations, and carcinogenesis. Numerous multiple-step DNA repair pathways exist whose deployment depends on the nature of the DNA lesion. Common to all eukaryotic DNA repair pathways is the need to unravel the compacted chromatin structure to facilitate access of the repair machinery to the DNA and restoration of the original chromatin state afterward. Accordingly, our cells utilize a plethora of coordinated mechanisms to locally open up the chromatin structure to reveal the underlying DNA sequence and to orchestrate the efficient and accurate repair of DNA lesions. Here we review changes to the chromatin structure that are intrinsic to the DNA damage response and the available mechanistic insight into how these chromatin changes facilitate distinct stages of the DNA damage repair pathways to maintain genomic stability.
DNA损伤修复效率低下和不准确是DNA突变、染色体畸变及致癌作用的主要原因。存在众多多步骤DNA修复途径,其部署取决于DNA损伤的性质。所有真核生物DNA修复途径的共同之处在于,需要解开紧密的染色质结构,以便修复机制能够接触到DNA,并在之后恢复原始染色质状态。因此,我们的细胞利用大量协调机制来局部打开染色质结构,以揭示潜在的DNA序列,并精心安排DNA损伤的高效准确修复。在此,我们综述了DNA损伤反应所固有的染色质结构变化,以及关于这些染色质变化如何促进DNA损伤修复途径的不同阶段以维持基因组稳定性的现有机制见解。