Suppr超能文献

应用模式混合模型解决 SPSS 中纵向数据分析中的缺失数据问题。

Application of pattern mixture models to address missing data in longitudinal data analysis using SPSS.

机构信息

School of Nursing, George Washington University, DC, USA.

出版信息

Nurs Res. 2012 May-Jun;61(3):195-203. doi: 10.1097/NNR.0b013e3182541d8c.

Abstract

BACKGROUND

Longitudinal studies are used in nursing research to examine changes over time in health indicators. Traditional approaches to longitudinal analysis of means, such as analysis of variance with repeated measures, are limited to analyzing complete cases. This limitation can lead to biased results due to withdrawal or data omission bias or to imputation of missing data, which can lead to bias toward the null if data are not missing completely at random. Pattern mixture models are useful to evaluate the informativeness of missing data and to adjust linear mixed model (LMM) analyses if missing data are informative.

OBJECTIVES

The aim of this study was to provide an example of statistical procedures for applying a pattern mixture model to evaluate the informativeness of missing data and conduct analyses of data with informative missingness in longitudinal studies using SPSS.

METHODS

The data set from the Patients' and Families' Psychological Response to Home Automated External Defibrillator Trial was used as an example to examine informativeness of missing data with pattern mixture models and to use a missing data pattern in analysis of longitudinal data.

RESULTS

Prevention of withdrawal bias, omitted data bias, and bias toward the null in longitudinal LMMs requires the assessment of the informativeness of the occurrence of missing data.

DISCUSSION

Missing data patterns can be incorporated as fixed effects into LMMs to evaluate the contribution of the presence of informative missingness to and control for the effects of missingness on outcomes. Pattern mixture models are a useful method to address the presence and effect of informative missingness in longitudinal studies.

摘要

背景

纵向研究被用于护理研究中,以检测健康指标随时间的变化。传统的均值纵向分析方法,如重复测量方差分析,仅限于分析完整的病例。这种限制可能会由于退出或数据缺失偏差导致结果产生偏差,或者由于缺失数据的插补会导致对零假设的偏差,如果数据不是完全随机缺失的话。模式混合模型可用于评估缺失数据的信息量,并在缺失数据具有信息性时调整线性混合模型(LMM)分析。

目的

本研究旨在提供一个应用模式混合模型评估缺失数据信息量的统计程序示例,并使用 SPSS 对具有缺失信息的纵向研究中的数据进行分析。

方法

以患者和家庭对家庭自动体外除颤器试验的心理反应的数据为例,使用模式混合模型检查缺失数据的信息量,并在分析纵向数据时使用缺失数据模式。

结果

预防纵向 LMM 中的退出偏差、遗漏数据偏差和对零假设的偏差,需要评估缺失数据发生的信息量。

讨论

缺失数据模式可以作为固定效应纳入 LMM 中,以评估存在有信息性缺失对结果的影响,并控制缺失对结果的影响。模式混合模型是解决纵向研究中存在和影响有信息性缺失的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验