Suppr超能文献

使用高阶统计量对多维时间序列加速度计数据进行半监督事件检测。

Semi-supervised event detection using higher order statistics for multidimensional time series accelerometer data.

作者信息

Min Cheol-Hong, Tewfik Ahmed H

机构信息

Department of Electrical and ComputerEngineering at the University of Minnesota – Twin Cities, Minneapolis, MN55455, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:365-8. doi: 10.1109/IEMBS.2011.6090119.

Abstract

In this study, we target to automatically detect stereotypical behavioral patterns (stereotypy) and self-injurious behaviors (SIB) of Autistic children which can lead to critical damages or wounds as they tend to repeatedly harm oneself. Our custom designed accelerometer based wearable sensors are placed at wrists, ankles and upper body to detect stereotypy and SIB. The analysis was done on four children diagnosed with ASD who showed repeated behaviors that involve part of the body such as flapping arms, body rocking and self-injurious behaviors such as punching their face, or hitting their legs. Our goal of detecting novel events relies on the fact that the limitation of training data and variability in the possible combination of signals and events also make it impossible to design a single algorithm to understand all events in natural setting. Therefore, a semi-supervised method to discover and track unknown events in a multidimensional sensor data rises as a very important topic in classification and detection problems. In this paper, we show how the Higher Order Statistics (HOS) features can be used to design dictionaries and to detect novel events in a multichannel time series data. We explain our methods to detect novel events in a multidimensional time series data and combine the proposed semi-supervised learning method to improve the adaptability of the system while maintaining comparable detection accuracy as the supervised method. We, compare our results to the supervised methods that we have previously developed and show that although semi-supervised method do not achieve better performance compared to supervised methods, it can efficiently find new events and anomalies in multidimensional time series data with similar performance of the supervised method. We show that our proposed method achieves recall rate of 93.3% compared to 94.1% for the supervised method studied earlier.

摘要

在本研究中,我们旨在自动检测自闭症儿童的刻板行为模式(刻板动作)和自伤行为(SIB),这些行为往往会导致严重伤害或创伤,因为他们倾向于反复伤害自己。我们定制设计的基于加速度计的可穿戴传感器放置在手腕、脚踝和上半身,以检测刻板动作和自伤行为。对四名被诊断为自闭症谱系障碍(ASD)的儿童进行了分析,他们表现出涉及身体部位的重复行为,如摆动双臂、身体摇晃,以及自伤行为,如打自己的脸或踢自己的腿。我们检测新事件的目标基于这样一个事实,即训练数据的局限性以及信号和事件可能组合的变异性也使得设计一种单一算法来理解自然环境中的所有事件变得不可能。因此,一种在多维传感器数据中发现和跟踪未知事件的半监督方法成为分类和检测问题中一个非常重要的课题。在本文中,我们展示了如何使用高阶统计(HOS)特征来设计字典,并在多通道时间序列数据中检测新事件。我们解释了在多维时间序列数据中检测新事件的方法,并结合所提出的半监督学习方法来提高系统的适应性,同时保持与监督方法相当的检测精度。我们将我们的结果与我们之前开发的监督方法进行比较,结果表明,虽然半监督方法与监督方法相比没有取得更好的性能,但它可以在多维时间序列数据中有效地发现新事件和异常,其性能与监督方法相似。我们表明,我们提出的方法实现了93.3%的召回率,而之前研究的监督方法的召回率为94.1%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验