Großekathöfer Ulf, Manyakov Nikolay V, Mihajlović Vojkan, Pandina Gahan, Skalkin Andrew, Ness Seth, Bangerter Abigail, Goodwin Matthew S
Holst Centre, IMEC Eindhoven, Netherlands.
Janssen Research & Development Beerse, Belgium.
Front Neuroinform. 2017 Feb 16;11:9. doi: 10.3389/fninf.2017.00009. eCollection 2017.
A number of recent studies using accelerometer features as input to machine learning classifiers show promising results for automatically detecting stereotypical motor movements (SMM) in individuals with Autism Spectrum Disorder (ASD). However, replicating these results across different types of accelerometers and their position on the body still remains a challenge. We introduce a new set of features in this domain based on recurrence plot and quantification analyses that are orientation invariant and able to capture non-linear dynamics of SMM. Applying these features to an existing published data set containing acceleration data, we achieve up to 9% average increase in accuracy compared to current state-of-the-art published results. Furthermore, we provide evidence that a single torso sensor can automatically detect multiple types of SMM in ASD, and that our approach allows recognition of SMM with high accuracy in individuals when using a person-independent classifier.
最近的一些研究将加速度计特征用作机器学习分类器的输入,在自动检测自闭症谱系障碍(ASD)个体的刻板运动(SMM)方面显示出了有前景的结果。然而,在不同类型的加速度计及其在身体上的位置之间复制这些结果仍然是一个挑战。我们基于递归图和量化分析在该领域引入了一组新特征,这些特征是方向不变的,并且能够捕捉SMM的非线性动力学。将这些特征应用于现有的包含加速度数据的已发表数据集,与当前已发表的最先进结果相比,我们的准确率平均提高了9%。此外,我们提供的证据表明,单个躯干传感器可以自动检测ASD中的多种类型的SMM,并且当使用独立于人的分类器时,我们的方法能够在个体中高精度地识别SMM。