Suppr超能文献

Use of genetic algorithm for selection of regularization parameters in multiple constraint inverse ECG problem.

作者信息

Gavgani Alireza Mazloumi, Dogrusoz Yesim Serinagaoglu

机构信息

Electrical and Electronics Engineering Department, Middle East Technical University, Ankara, Turkey.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:985-8. doi: 10.1109/IEMBS.2011.6090228.

Abstract

Tikhonov regularization is one of the most widely used regularization approaches in literature to overcome the ill-posedness of the inverse electrocardiography problem. However, the resulting solutions are biased towards the constraint used for regularization. One alternative to obtain improved results is to employ multiple constraints in the cost function. This approach has been shown to produce better results; however finding appropriate regularization parameters is a serious limitation of the method. In this study, we propose estimating multiple regularization parameters using a genetic algorithm based approach. Applicability of the approach is demonstrated here using two and three constraints. The results show that GA based multiple constraints approach improves the Tikhonov regularization solutions.

摘要

相似文献

1
Use of genetic algorithm for selection of regularization parameters in multiple constraint inverse ECG problem.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:985-8. doi: 10.1109/IEMBS.2011.6090228.
2
Genetic algorithm-based regularization parameter estimation for the inverse electrocardiography problem using multiple constraints.
Med Biol Eng Comput. 2013 Apr;51(4):367-75. doi: 10.1007/s11517-012-1005-6. Epub 2012 Dec 8.
3
Two hybrid regularization frameworks for solving the electrocardiography inverse problem.
Phys Med Biol. 2008 Sep 21;53(18):5151-64. doi: 10.1088/0031-9155/53/18/020. Epub 2008 Aug 22.
4
Physiology-based regularization of the electrocardiographic inverse problem.
Med Biol Eng Comput. 2017 Aug;55(8):1353-1365. doi: 10.1007/s11517-016-1595-5. Epub 2016 Nov 21.
5
Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem.
Phys Med Biol. 2007 Mar 7;52(5):1277-94. doi: 10.1088/0031-9155/52/5/005. Epub 2007 Feb 1.
6
On epicardial potential reconstruction using regularization schemes with the L1-norm data term.
Phys Med Biol. 2011 Jan 7;56(1):57-72. doi: 10.1088/0031-9155/56/1/004. Epub 2010 Nov 30.
7
Solving the inverse problem of electrocardiography using a Duncan and Horn formulation of the Kalman filter.
IEEE Trans Biomed Eng. 2004 Mar;51(3):507-15. doi: 10.1109/TBME.2003.821027.
8
A wavefront-based constraint for potential surface solutions in inverse electrocardiography.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2550-3. doi: 10.1109/IEMBS.2006.260373.
9
Truncated total least squares: a new regularization method for the solution of ECG inverse problems.
IEEE Trans Biomed Eng. 2008 Apr;55(4):1327-35. doi: 10.1109/TBME.2007.912404.
10
Assessment of regularization techniques for electrocardiographic imaging.
J Electrocardiol. 2014 Jan-Feb;47(1):20-8. doi: 10.1016/j.jelectrocard.2013.10.004. Epub 2013 Oct 17.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验