Suppr超能文献

心电图成像正则化技术评估

Assessment of regularization techniques for electrocardiographic imaging.

作者信息

Milanič Matija, Jazbinšek Vojko, Macleod Robert S, Brooks Dana H, Hren Rok

机构信息

Jozef Stefan Institute, Ljubljana, Slovenia.

Institute of Mathematics, Physics, and Mechanics, Ljubljana, Slovenia.

出版信息

J Electrocardiol. 2014 Jan-Feb;47(1):20-8. doi: 10.1016/j.jelectrocard.2013.10.004. Epub 2013 Oct 17.

Abstract

A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-posedness. While many regularization techniques have been developed to control wild oscillations of the solution, the choice of proper regularization methods for obtaining clinically acceptable solutions is still a subject of ongoing research. However there has been little rigorous comparison across methods proposed by different groups. This study systematically compared various regularization techniques for solving the ECGI problem under a unified simulation framework, consisting of both 1) progressively more complex idealized source models (from single dipole to triplet of dipoles), and 2) an electrolytic human torso tank containing a live canine heart, with the cardiac source being modeled by potentials measured on a cylindrical cage placed around the heart. We tested 13 different regularization techniques to solve the inverse problem of recovering epicardial potentials, and found that non-quadratic methods (total variation algorithms) and first-order and second-order Tikhonov regularizations outperformed other methodologies and resulted in similar average reconstruction errors.

摘要

一种广泛用于解决心电图逆问题的方法是根据在躯干表面测得的心电图(ECG)来计算心外膜上的电位。解决这种心电图成像(ECGI)问题的主要挑战在于其内在的不适定性。虽然已经开发了许多正则化技术来控制解的剧烈振荡,但选择合适的正则化方法以获得临床上可接受的解仍然是一个正在进行研究的课题。然而,不同团队提出的方法之间几乎没有进行过严格的比较。本研究在一个统一的模拟框架下系统地比较了用于解决ECGI问题的各种正则化技术,该框架包括:1)逐渐更复杂的理想化源模型(从单偶极子到三偶极子),以及2)一个包含活体犬心脏的电解人体躯干模型,心脏源由放置在心脏周围的圆柱形笼上测得的电位来建模。我们测试了13种不同的正则化技术来解决恢复心外膜电位的逆问题,发现非二次方法(总变分算法)以及一阶和二阶蒂霍诺夫正则化优于其他方法,并导致了相似的平均重建误差。

相似文献

1
Assessment of regularization techniques for electrocardiographic imaging.
J Electrocardiol. 2014 Jan-Feb;47(1):20-8. doi: 10.1016/j.jelectrocard.2013.10.004. Epub 2013 Oct 17.
2
Physiology-based regularization of the electrocardiographic inverse problem.
Med Biol Eng Comput. 2017 Aug;55(8):1353-1365. doi: 10.1007/s11517-016-1595-5. Epub 2016 Nov 21.
3
Two hybrid regularization frameworks for solving the electrocardiography inverse problem.
Phys Med Biol. 2008 Sep 21;53(18):5151-64. doi: 10.1088/0031-9155/53/18/020. Epub 2008 Aug 22.
4
Truncated total least squares: a new regularization method for the solution of ECG inverse problems.
IEEE Trans Biomed Eng. 2008 Apr;55(4):1327-35. doi: 10.1109/TBME.2007.912404.
5
Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem.
Phys Med Biol. 2007 Mar 7;52(5):1277-94. doi: 10.1088/0031-9155/52/5/005. Epub 2007 Feb 1.
6
Application of the method of fundamental solutions to potential-based inverse electrocardiography.
Ann Biomed Eng. 2006 Aug;34(8):1272-88. doi: 10.1007/s10439-006-9131-7. Epub 2006 Jun 29.
7
Estimates of endocardial potentials from non-contact intracavitary probes.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2560-3. doi: 10.1109/IEMBS.2006.260545.
9
Solving the inverse problem of electrocardiography using a Duncan and Horn formulation of the Kalman filter.
IEEE Trans Biomed Eng. 2004 Mar;51(3):507-15. doi: 10.1109/TBME.2003.821027.
10
On epicardial potential reconstruction using regularization schemes with the L1-norm data term.
Phys Med Biol. 2011 Jan 7;56(1):57-72. doi: 10.1088/0031-9155/56/1/004. Epub 2010 Nov 30.

引用本文的文献

1
Systematic review of computational techniques, dataset utilization, and feature extraction in electrocardiographic imaging.
Med Biol Eng Comput. 2025 May;63(5):1289-1317. doi: 10.1007/s11517-024-03264-z. Epub 2025 Jan 9.
2
Basis and applicability of noninvasive inverse electrocardiography: a comparison between cardiac source models.
Front Physiol. 2023 Dec 13;14:1295103. doi: 10.3389/fphys.2023.1295103. eCollection 2023.
3
Quantifying and Visualizing Uncertainty for Source Localization in Electrocardiographic Imaging.
Comput Methods Biomech Biomed Eng Imaging Vis. 2023;11(3):812-822. doi: 10.1080/21681163.2022.2113824. Epub 2022 Sep 12.
5
Electrocardiographic imaging in the atria.
Med Biol Eng Comput. 2023 Apr;61(4):879-896. doi: 10.1007/s11517-022-02709-7. Epub 2022 Nov 12.
6
Body Surface Potential Mapping: Contemporary Applications and Future Perspectives.
Hearts (Basel). 2021 Dec;2(4):514-542. doi: 10.3390/hearts2040040. Epub 2021 Nov 5.
7
8
Reconstruction of cardiac position using body surface potentials.
Comput Biol Med. 2022 Mar;142:105174. doi: 10.1016/j.compbiomed.2021.105174. Epub 2022 Jan 20.
9
Non-invasive Estimation of Atrial Fibrillation Driver Position With Convolutional Neural Networks and Body Surface Potentials.
Front Physiol. 2021 Oct 14;12:733449. doi: 10.3389/fphys.2021.733449. eCollection 2021.
10
Simultaneous Multi-Heartbeat ECGI Solution with a Time-Varying Forward Model: a Joint Inverse Formulation.
Funct Imaging Model Heart. 2021 Jun;12738:493-502. doi: 10.1007/978-3-030-78710-3_47. Epub 2021 Jun 18.

本文引用的文献

1
On epicardial potential reconstruction using regularization schemes with the L1-norm data term.
Phys Med Biol. 2011 Jan 7;56(1):57-72. doi: 10.1088/0031-9155/56/1/004. Epub 2010 Nov 30.
3
Application of L1-norm regularization to epicardial potential solution of the inverse electrocardiography problem.
Ann Biomed Eng. 2009 May;37(5):902-12. doi: 10.1007/s10439-009-9665-6. Epub 2009 Mar 6.
4
On bioelectric potentials in an inhomogeneous volume conductor.
Biophys J. 1967 Jan;7(1):1-11. doi: 10.1016/S0006-3495(67)86571-8. Epub 2008 Dec 31.
5
Organization of ventricular fibrillation in the human heart.
Circ Res. 2007 Jun 22;100(12):e87-101. doi: 10.1161/CIRCRESAHA.107.150730. Epub 2007 May 31.
6
Wavefront-based models for inverse electrocardiography.
IEEE Trans Biomed Eng. 2006 Sep;53(9):1821-31. doi: 10.1109/TBME.2006.878117.
9
Application of high-order boundary elements to the electrocardiographic inverse problem.
Comput Methods Programs Biomed. 1999 Feb;58(2):119-31. doi: 10.1016/s0169-2607(98)00076-5.
10
Inverse electrocardiography by simultaneous imposition of multiple constraints.
IEEE Trans Biomed Eng. 1999 Jan;46(1):3-18. doi: 10.1109/10.736746.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验