Electrical and Electronics Engineering Department, Middle East Technical University, Ankara, Turkey.
Med Biol Eng Comput. 2013 Apr;51(4):367-75. doi: 10.1007/s11517-012-1005-6. Epub 2012 Dec 8.
In inverse electrocardiography, the goal is to estimate cardiac electrical sources from potential measurements on the body surface. It is by nature an ill-posed problem, and regularization must be employed to obtain reliable solutions. This paper employs the multiple constraint solution approach proposed in Brooks et al. (IEEE Trans Biomed Eng 46(1):3-18, 1999) and extends its practical applicability to include more than two constraints by finding appropriate values for the multiple regularization parameters. Here, we propose the use of real-valued genetic algorithms for the estimation of multiple regularization parameters. Theoretically, it is possible to include as many constraints as necessary and find the corresponding regularization parameters using this approach. We have shown the feasibility of our method using two and three constraints. The results indicate that GA could be a good approach for the estimation of multiple regularization parameters.
在逆心电图学中,目标是从体表的电位测量中估计心脏电源。这本质上是一个不适定问题,必须采用正则化方法来获得可靠的解。本文采用 Brooks 等人提出的多约束解方法(IEEE Trans Biomed Eng 46(1):3-18, 1999),并通过找到多个正则化参数的适当值,将其实际适用性扩展到包括两个以上的约束。在这里,我们提出使用实值遗传算法来估计多个正则化参数。从理论上讲,可以使用这种方法包含任意数量的约束,并找到相应的正则化参数。我们已经使用两个和三个约束证明了我们方法的可行性。结果表明,GA 可能是估计多个正则化参数的一种很好的方法。