Suppr超能文献

用于癫痫发作预测研究的优化特征子集。

Optimized feature subsets for epileptic seizure prediction studies.

作者信息

Direito Bruno, Ventura Francisco, Teixeira César, Dourado António

机构信息

Science and Technology Faculty, University of Coimbra, Pólo II, Coimbra, Portugal.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1636-9. doi: 10.1109/IEMBS.2011.6090472.

Abstract

The reduction of the number of EEG features to give as inputs to epilepsy seizure predictors is a needed step towards the development of a transportable device for real-time warning. This paper presents a comparative study of three feature selection methods, based on Support Vector Machines. Minimum-Redundancy Maximum-Relevance, Recursive Feature Elimination, Genetic Algorithms, show that, for three patients of the European Database on Epilepsy, the most important univariate features are related to spectral information and statistical moments.

摘要

减少作为癫痫发作预测器输入的脑电图特征数量,是朝着开发可实时预警的便携式设备迈出的必要一步。本文基于支持向量机对三种特征选择方法进行了比较研究。最小冗余最大相关性、递归特征消除、遗传算法表明,对于欧洲癫痫数据库中的三名患者,最重要的单变量特征与频谱信息和统计矩有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验