Direito Bruno, Ventura Francisco, Teixeira César, Dourado António
Science and Technology Faculty, University of Coimbra, Pólo II, Coimbra, Portugal.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1636-9. doi: 10.1109/IEMBS.2011.6090472.
The reduction of the number of EEG features to give as inputs to epilepsy seizure predictors is a needed step towards the development of a transportable device for real-time warning. This paper presents a comparative study of three feature selection methods, based on Support Vector Machines. Minimum-Redundancy Maximum-Relevance, Recursive Feature Elimination, Genetic Algorithms, show that, for three patients of the European Database on Epilepsy, the most important univariate features are related to spectral information and statistical moments.
减少作为癫痫发作预测器输入的脑电图特征数量,是朝着开发可实时预警的便携式设备迈出的必要一步。本文基于支持向量机对三种特征选择方法进行了比较研究。最小冗余最大相关性、递归特征消除、遗传算法表明,对于欧洲癫痫数据库中的三名患者,最重要的单变量特征与频谱信息和统计矩有关。