Suppr超能文献

通过整合脑电图特征的通道间和时域分析对发作前期和发作间期阶段进行分类

Classification Preictal and Interictal Stages via Integrating Interchannel and Time-Domain Analysis of EEG Features.

作者信息

Lin Lung-Chang, Chen Sharon Chia-Ju, Chiang Ching-Tai, Wu Hui-Chuan, Yang Rei-Cheng, Ouyang Chen-Sen

机构信息

1 Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.

2 Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.

出版信息

Clin EEG Neurosci. 2017 Mar;48(2):139-145. doi: 10.1177/1550059416649076. Epub 2016 Jul 10.

Abstract

The life quality of patients with refractory epilepsy is extremely affected by abrupt and unpredictable seizures. A reliable method for predicting seizures is important in the management of refractory epilepsy. A critical factor in seizure prediction involves the classification of the preictal and interictal stages. This study aimed to develop an efficient, automatic, quantitative, and individualized approach for preictal/interictal stage identification. Five epileptic children, who had experienced at least 2 episodes of seizures during a 24-hour video EEG recording, were included. Artifact-free preictal and interictal EEG epochs were acquired, respectively, and characterized with 216 global feature descriptors. The best subset of 5 discriminative descriptors was identified. The best subsets showed differences among the patients. Statistical analysis revealed most of the 5 descriptors in each subset were significantly different between the preictal and interictal stages for each patient. The proposed approach yielded weighted averages of 97.50% correctness, 96.92% sensitivity, 97.78% specificity, and 95.45% precision on classifying test epochs. Although the case number was limited, this study successfully integrated a new EEG analytical method to classify preictal and interictal EEG segments and might be used further in predicting the occurrence of seizures.

摘要

难治性癫痫患者的生活质量受到突然且不可预测的癫痫发作的极大影响。一种可靠的癫痫发作预测方法在难治性癫痫的管理中很重要。癫痫发作预测的一个关键因素涉及发作前期和发作间期的分类。本研究旨在开发一种高效、自动、定量且个性化的发作前期/发作间期识别方法。纳入了五名癫痫儿童,他们在24小时视频脑电图记录期间至少经历了2次癫痫发作。分别获取了无伪迹的发作前期和发作间期脑电图片段,并用216个全局特征描述符进行表征。确定了5个有鉴别力的描述符的最佳子集。最佳子集在患者之间存在差异。统计分析表明,每个子集中的5个描述符中的大多数在每个患者的发作前期和发作间期阶段之间存在显著差异。所提出的方法在对测试片段进行分类时,正确率加权平均值为97.50%,灵敏度为96.92%,特异性为97.78%,精度为95.45%。尽管病例数量有限,但本研究成功整合了一种新的脑电图分析方法来对发作前期和发作间期脑电图片段进行分类,并可能在进一步预测癫痫发作的发生中得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验