Xu Min, Zuo Long, Iyengar Satish, Goldfain Albert, DelloStritto Jim
2-212 Center for Science and Technology, Syracuse, NY 13244, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1794-7. doi: 10.1109/IEMBS.2011.6090511.
Most existing human activity classification systems require a large training dataset to construct statistical models for each activity of interest. This may be impractical in many cases. In this paper, we proposed a semi-supervised HMM based activity monitoring system, that adapts the HMM for a specific subject from a general model in order to alleviate the requirement of a large training data set. In addition, using two triaxial accelerometers, our system not only identifies simple events such as sitting, standing and walking, but also recognizes the behavior or a more complex activity by temporally linking the events together. Experimental results demonstrate the feasibility of our proposed system.
大多数现有的人类活动分类系统需要大量的训练数据集来为每个感兴趣的活动构建统计模型。在许多情况下,这可能不切实际。在本文中,我们提出了一种基于半监督隐马尔可夫模型的活动监测系统,该系统从通用模型为特定主体适配隐马尔可夫模型,以减轻对大量训练数据集的需求。此外,通过使用两个三轴加速度计,我们的系统不仅可以识别诸如坐、站和行走等简单事件,还可以通过将这些事件在时间上关联起来识别行为或更复杂的活动。实验结果证明了我们所提出系统的可行性。