Suppr超能文献

高密度脑电图和独立成分分析混合模型可区分膝盖收缩与脚踝收缩。

High-density EEG and independent component analysis mixture models distinguish knee contractions from ankle contractions.

作者信息

Gwin Joseph T, Ferris Daniel

机构信息

University of Michigan, Ann Arbor, MI 48109, USA. jgwin@ umich.edu

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4195-8. doi: 10.1109/IEMBS.2011.6091041.

Abstract

Decoding human motor tasks from single trial electroencephalography (EEG) signals can help scientists better understand cortical neurophysiology and may lead to brain computer interfaces (BCI) for motor augmentation. Spatial characteristics of EEG have been used to distinguish left from right hand motor imagery and motor action. We used independent component analysis (ICA) of EEG to distinguish right knee action from right ankle action. We recorded 264-channel EEG while 5 subjects performed a variety of knee and ankle exercises. An adaptive mixture independent component analysis (ICA) algorithm generated two distinct mixture models from a merged set of EEG signals (including both knee and ankle actions) without prior knowledge of the underlying exercise. The ICA mixture models parsed EEG signals into maximally independent component (IC) processes representing electrocortical sources, muscle sources, and artifacts. We calculated a spatially fixed equivalent current dipole for each IC using an inverse modeling approach. The fit of the models to the single trial EEG signals distinguished knee exercises from ankle exercise with 90% accuracy. For 3 of 5 subjects, accuracy was 100%. Electrocortical current dipole locations revealed significant differences in the knee and ankle mixture models that were consistent with the somatotopy of the tasks. These data demonstrate that EEG mixture models can distinguish motor tasks that have different somatotopic arrangements, even within the same brain hemisphere.

摘要

从单次试验脑电图(EEG)信号中解码人类运动任务,有助于科学家更好地理解皮层神经生理学,并可能催生用于运动增强的脑机接口(BCI)。EEG的空间特征已被用于区分左手与右手的运动想象及运动动作。我们利用EEG的独立成分分析(ICA)来区分右膝动作与右踝动作。我们记录了264通道的EEG,同时5名受试者进行了各种膝部和踝部运动。一种自适应混合独立成分分析(ICA)算法,从一组合并的EEG信号(包括膝部和踝部动作)中生成了两个不同的混合模型,而无需事先了解潜在的运动情况。ICA混合模型将EEG信号解析为代表电皮层源、肌肉源和伪迹的最大独立成分(IC)过程。我们使用逆向建模方法为每个IC计算了一个空间固定的等效电流偶极子。模型对单次试验EEG信号的拟合,以90%的准确率区分了膝部运动和踝部运动。对于5名受试者中的3名,准确率为100%。电皮层电流偶极子的位置揭示了膝部和踝部混合模型中的显著差异,这些差异与任务的躯体定位一致。这些数据表明,EEG混合模型可以区分具有不同躯体定位排列的运动任务,即使是在同一脑半球内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验