Lee J, McManus D, Chon K
Department of Biomedical Engineering, Worcester Polytechnic Institute, MA 01609, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4685-8. doi: 10.1109/IEMBS.2011.6091160.
We introduce a novel method for automatic detection of Atrial Fibrillation (AF) using time-varying coherence functions (TVCF) and Shannon Entropy (SE). The TVCF is estimated by the multiplication of two time-varying transfer functions (TVTFs). Two TVTFs are obtained using two adjacent data segments with one data segment as the input signal and the other data segment as the output to produce the first TVTF; the second TVTF is produced by reversing the input and output signals. The detection algorithm was tested on RR interval time series derived from two databases: the MIT-BIH Atrial Fibrillation (AF) and the MIT-BIH normal sinus rhythm (NSR). The MIT-BIH database contains a variety of short and long AF beats from 25 subjects and the MIT-BIH NSR database consists of only normal sinus rhythms from 18 subjects. Using the receiver operating characteristic curves from the combination of TVCF and SE, we obtained the accuracy of 97.49%, sensitivity of 97.41% and specificity of 97.54% for the MIT-BIH AF database. Furthermore, the specificity of the MIT-BIH NSR database was 100%.
我们介绍了一种使用时变相干函数(TVCF)和香农熵(SE)自动检测心房颤动(AF)的新方法。TVCF通过两个时变传递函数(TVTF)相乘来估计。使用两个相邻的数据段获得两个TVTF,其中一个数据段作为输入信号,另一个数据段作为输出以产生第一个TVTF;第二个TVTF通过反转输入和输出信号产生。该检测算法在来自两个数据库的RR间期时间序列上进行了测试:麻省理工学院-麻省理工学院-比哈尔心房颤动(AF)数据库和麻省理工学院-比哈尔正常窦性心律(NSR)数据库。麻省理工学院-比哈尔数据库包含来自25名受试者的各种短程和长程房颤搏动,而麻省理工学院-比哈尔NSR数据库仅包含来自18名受试者的正常窦性心律。使用TVCF和SE组合的受试者工作特征曲线,我们在麻省理工学院-比哈尔AF数据库中获得了97.49%的准确率、97.41%的灵敏度和97.54%的特异性。此外,麻省理工学院-比哈尔NSR数据库的特异性为100%。