Suppr超能文献

基于符号动力学和香农熵的心房颤动自动在线检测。

Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy.

机构信息

Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Xili Nanshan, Shenzhen 518055, China.

出版信息

Biomed Eng Online. 2014 Feb 17;13(1):18. doi: 10.1186/1475-925X-13-18.

Abstract

BACKGROUND

Atrial fibrillation (AF) is the most common and debilitating abnormalities of the arrhythmias worldwide, with a major impact on morbidity and mortality. The detection of AF becomes crucial in preventing both acute and chronic cardiac rhythm disorders.

OBJECTIVE

Our objective is to devise a method for real-time, automated detection of AF episodes in electrocardiograms (ECGs). This method utilizes RR intervals, and it involves several basic operations of nonlinear/linear integer filters, symbolic dynamics and the calculation of Shannon entropy. Using novel recursive algorithms, online analytical processing of this method can be achieved.

RESULTS

Four publicly-accessible sets of clinical data (Long-Term AF, MIT-BIH AF, MIT-BIH Arrhythmia, and MIT-BIH Normal Sinus Rhythm Databases) were selected for investigation. The first database is used as a training set; in accordance with the receiver operating characteristic (ROC) curve, the best performance using this method was achieved at the discrimination threshold of 0.353: the sensitivity (Se), specificity (Sp), positive predictive value (PPV) and overall accuracy (ACC) were 96.72%, 95.07%, 96.61% and 96.05%, respectively. The other three databases are used as testing sets. Using the obtained threshold value (i.e., 0.353), for the second set, the obtained parameters were 96.89%, 98.25%, 97.62% and 97.67%, respectively; for the third database, these parameters were 97.33%, 90.78%, 55.29% and 91.46%, respectively; finally, for the fourth set, the Sp was 98.28%. The existing methods were also employed for comparison.

CONCLUSIONS

Overall, in contrast to the other available techniques, the test results indicate that the newly developed approach outperforms traditional methods using these databases under assessed various experimental situations, and suggest our technique could be of practical use for clinicians in the future.

摘要

背景

心房颤动(AF)是全球最常见和最具破坏性的心律失常异常,对发病率和死亡率有重大影响。AF 的检测在预防急性和慢性心脏节律紊乱方面至关重要。

目的

我们的目标是设计一种实时、自动检测心电图(ECG)中 AF 发作的方法。该方法利用 RR 间隔,涉及非线性/线性整数滤波器、符号动力学和香农熵计算的几个基本操作。使用新颖的递归算法,可以实现该方法的在线分析处理。

结果

选择了四个公开可用的临床数据集(长期 AF、MIT-BIH AF、MIT-BIH 心律失常和 MIT-BIH 正常窦性节律数据库)进行研究。第一个数据库用作训练集;根据接收者操作特征(ROC)曲线,该方法在判别阈值为 0.353 时表现最佳:灵敏度(Se)、特异性(Sp)、阳性预测值(PPV)和总准确率(ACC)分别为 96.72%、95.07%、96.61%和 96.05%。其他三个数据库用作测试集。使用获得的阈值(即 0.353),对于第二个数据集,获得的参数分别为 96.89%、98.25%、97.62%和 97.67%;对于第三个数据库,这些参数分别为 97.33%、90.78%、55.29%和 91.46%;最后,对于第四个数据集,Sp 为 98.28%。还比较了现有的方法。

结论

总体而言,与其他可用技术相比,测试结果表明,在评估的各种实验情况下,新开发的方法优于传统方法,并且表明我们的技术在未来可能对临床医生具有实际用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e52/3996093/447b1d63f2f5/1475-925X-13-18-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验