Suppr超能文献

房颤鉴别中熵方法的比较。

A comparison of entropy approaches for AF discrimination.

机构信息

The State Key Laboratory of Bioelectronics, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing, People's Republic of China. Department of Biomedical Informatics, Emory University, Atlanta, GA, United States of America.

出版信息

Physiol Meas. 2018 Jul 6;39(7):074002. doi: 10.1088/1361-6579/aacc48.

Abstract

OBJECTIVE

This study focuses on the comparison of single entropy measures for ventricular response analysis-based AF detection.

APPROACH

To enhance the performance of entropy-based AF detectors, we developed a normalized fuzzy entropy, [Formula: see text], a novel metric that (1) uses a fuzzy function to determine vector similarity, (2) replaces probability estimation with density estimation for entropy approximation, (3) utilizes a flexible distance threshold parameter, and (4) adjusts for heart rate by subtracting the natural log value of the mean RR interval. An AF detector based on [Formula: see text] was trained using the MIT-BIH atrial fibrillation (AF) database, and tested on the MIT-BIH normal sinus rhythm (NSR) and MIT-BIH arrhythmia databases. The [Formula: see text]-based AF detector was compared to AF detectors based on three other entropy measures: sample entropy ([Formula: see text]), fuzzy measure entropy ([Formula: see text]) and coefficient of sample entropy ([Formula: see text]), over three standard window sizes.

MAIN RESULTS

To classify AF and non-AF rhythms, [Formula: see text] achieved the highest area under receiver operating characteristic curve (AUC) values of 92.72%, 95.27% and 96.76% for 12-, 30- and 60-beat window lengths respectively. This was higher than the performance of the next best technique, [Formula: see text], over all windows sizes, which provided respective AUCs of 91.12%, 91.86% and 90.55%. [Formula: see text] and [Formula: see text] resulted in lower AUCs (below 90%) over all window sizes. [Formula: see text] also provided superior performance for all other tested statistics, including the Youden index, sensitivity, specificity, accuracy, positive predictivity and negative predictivity. In conclusion, we show that [Formula: see text] can be used to accurately identify AF from RR interval time series. Furthermore, longer window lengths (up to one minute) increase the performance of all entropy-based AF detectors under evaluation except the [Formula: see text]-based method.

SIGNIFICANCE

Our results demonstrate that the new developed normalized fuzzy entropy is an accurate measure for detecting AF.

摘要

目的

本研究旨在比较基于心室反应分析的房颤检测的单一熵测度。

方法

为了提高基于熵的房颤检测器的性能,我们开发了一种归一化模糊熵 [Formula: see text],这是一种新的度量标准,它(1)使用模糊函数来确定向量相似性,(2)用密度估计代替概率估计来近似熵,(3)使用灵活的距离阈值参数,(4)通过减去平均 RR 间隔的自然对数来调整心率。基于 [Formula: see text] 的房颤检测器使用麻省理工学院-贝思以色列医院(MIT-BIH)房颤数据库进行训练,并在麻省理工学院-贝思以色列医院正常窦性节律(NSR)和麻省理工学院-贝思以色列医院心律失常数据库上进行测试。与基于三个其他熵测度的房颤检测器(样本熵 [Formula: see text]、模糊测度熵 [Formula: see text]和样本熵系数 [Formula: see text])相比,[Formula: see text]在三个标准窗口大小上均实现了更高的接收器工作特征曲线(ROC)下面积(AUC)值,分别为 92.72%、95.27%和 96.76%。对于 12、30 和 60 个心跳的窗口长度,这高于下一个最佳技术 [Formula: see text]在所有窗口大小上的性能,分别提供了 91.12%、91.86%和 90.55%的 AUC。在所有窗口大小上,[Formula: see text]和 [Formula: see text]产生的 AUC 均低于 90%。对于所有其他测试统计数据,[Formula: see text]也提供了卓越的性能,包括约登指数、敏感性、特异性、准确性、阳性预测值和阴性预测值。总之,我们表明 [Formula: see text]可用于从 RR 间隔时间序列中准确识别房颤。此外,更长的窗口长度(长达一分钟)除了基于 [Formula: see text]的方法外,还可以提高所有评估的基于熵的房颤检测器的性能。

意义

我们的结果表明,新开发的归一化模糊熵是一种准确检测房颤的方法。

相似文献

1
A comparison of entropy approaches for AF discrimination.
Physiol Meas. 2018 Jul 6;39(7):074002. doi: 10.1088/1361-6579/aacc48.
2
A New Entropy-Based Atrial Fibrillation Detection Method for Scanning Wearable ECG Recordings.
Entropy (Basel). 2018 Nov 26;20(12):904. doi: 10.3390/e20120904.
3
A simple method to detect atrial fibrillation using RR intervals.
Am J Cardiol. 2011 May 15;107(10):1494-7. doi: 10.1016/j.amjcard.2011.01.028. Epub 2011 Mar 17.
4
Time-varying coherence function for atrial fibrillation detection.
IEEE Trans Biomed Eng. 2013 Oct;60(10):2783-93. doi: 10.1109/TBME.2013.2264721. Epub 2013 May 22.
5
Atrial fibrillation detection using an iPhone 4S.
IEEE Trans Biomed Eng. 2013 Jan;60(1):203-6. doi: 10.1109/TBME.2012.2208112. Epub 2012 Jul 31.
6
Atrial Fibrillation detection using time-varying coherence function and Shannon Entropy.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4685-8. doi: 10.1109/IEMBS.2011.6091160.
7
Detection of atrial fibrillation episodes using a wristband device.
Physiol Meas. 2017 May;38(5):787-799. doi: 10.1088/1361-6579/aa5dd7. Epub 2017 Feb 2.
8
Classification of cardiac rhythm using heart rate dynamical measures: validation in MIT-BIH databases.
J Electrocardiol. 2015 Nov-Dec;48(6):943-6. doi: 10.1016/j.jelectrocard.2015.08.002. Epub 2015 Aug 4.
9
Probability density distribution of delta RR intervals: a novel method for the detection of atrial fibrillation.
Australas Phys Eng Sci Med. 2017 Sep;40(3):707-716. doi: 10.1007/s13246-017-0554-2. Epub 2017 Jun 15.
10
A novel method for detection of the transition between atrial fibrillation and sinus rhythm.
IEEE Trans Biomed Eng. 2011 Apr;58(4):1113-9. doi: 10.1109/TBME.2010.2096506. Epub 2010 Dec 3.

引用本文的文献

1
Compressed Deep Learning Models for Wearable Atrial Fibrillation Detection through Attention.
Sensors (Basel). 2024 Jul 24;24(15):4787. doi: 10.3390/s24154787.
2
pRR30, pRR3.25% and Asymmetrical Entropy Descriptors in Atrial Fibrillation Detection.
Entropy (Basel). 2024 Mar 28;26(4):296. doi: 10.3390/e26040296.
3
[Artificial intelligence in wearable electrocardiogram monitoring].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Dec 25;40(6):1084-1092. doi: 10.7507/1001-5515.202301032.
4
Atrial fibrillation classification based on the 2D representation of minimal subset ECG and a non-deep neural network.
Front Physiol. 2023 Feb 14;14:1070621. doi: 10.3389/fphys.2023.1070621. eCollection 2023.
6
Enhanced Laterality Index: A Novel Measure for Hemispheric Asymmetry.
J Healthc Eng. 2022 Apr 29;2022:8997108. doi: 10.1155/2022/8997108. eCollection 2022.
7
Premature Beats Rejection Strategy on Paroxysmal Atrial Fibrillation Detection.
Front Physiol. 2022 Apr 1;13:890139. doi: 10.3389/fphys.2022.890139. eCollection 2022.
8
Determination of Parameters for an Entropy-Based Atrial Fibrillation Detector.
Entropy (Basel). 2021 Sep 11;23(9):1199. doi: 10.3390/e23091199.
9
HADLN: Hybrid Attention-Based Deep Learning Network for Automated Arrhythmia Classification.
Front Physiol. 2021 Jul 5;12:683025. doi: 10.3389/fphys.2021.683025. eCollection 2021.

本文引用的文献

1
AF Classification from a Short Single Lead ECG Recording: the PhysioNet/Computing in Cardiology Challenge 2017.
Comput Cardiol (2010). 2017 Sep;44. doi: 10.22489/CinC.2017.065-469. Epub 2018 Apr 5.
2
Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation.
Comput Methods Programs Biomed. 2016 Jul;131:157-68. doi: 10.1016/j.cmpb.2016.04.009. Epub 2016 Apr 12.
3
Atrial fibrillation.
Nat Rev Dis Primers. 2016 Mar 31;2:16016. doi: 10.1038/nrdp.2016.16.
4
Impact of the presence of noise on RR interval-based atrial fibrillation detection.
J Electrocardiol. 2015 Nov-Dec;48(6):947-51. doi: 10.1016/j.jelectrocard.2015.08.013. Epub 2015 Aug 8.
5
Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm and sinus rhythm with frequent ectopy.
Physiol Meas. 2015 Sep;36(9):1873-88. doi: 10.1088/0967-3334/36/9/1873. Epub 2015 Aug 6.
6
Low-complexity detection of atrial fibrillation in continuous long-term monitoring.
Comput Biol Med. 2015 Oct 1;65:184-91. doi: 10.1016/j.compbiomed.2015.01.019. Epub 2015 Jan 28.
7
Heart disease and stroke statistics--2015 update: a report from the American Heart Association.
Circulation. 2015 Jan 27;131(4):e29-322. doi: 10.1161/CIR.0000000000000152. Epub 2014 Dec 17.
8
Detection of occult paroxysmal atrial fibrillation.
Med Biol Eng Comput. 2015 Apr;53(4):287-97. doi: 10.1007/s11517-014-1234-y. Epub 2014 Dec 14.
9
P-wave evidence as a method for improving algorithm to detect atrial fibrillation in insertable cardiac monitors.
Heart Rhythm. 2014 Sep;11(9):1575-83. doi: 10.1016/j.hrthm.2014.06.006. Epub 2014 Jun 6.
10
Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy.
Biomed Eng Online. 2014 Feb 17;13(1):18. doi: 10.1186/1475-925X-13-18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验