Suppr超能文献

通过实时运动跟踪和回顾性超分辨率体积重建实现运动稳健的磁共振成像。

Motion-robust MRI through real-time motion tracking and retrospective super-resolution volume reconstruction.

作者信息

Gholipour Ali, Polak Martin, van der Kouwe Andre, Nevo Erez, Warfield Simon K

机构信息

Department of Radiology, Children’s Hospital Boston, and Harvard Medical School, Boston, MA 02115, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5722-5. doi: 10.1109/IEMBS.2011.6091385.

Abstract

Magnetic Resonance Imaging (MRI) is highly sensitive to motion; hence current practice is based on the prevention of motion during scan. In newborns, young children, and patients with limited cooperation, this commonly requires full sedation or general anesthesia, which is time consuming, costly, and is associated with significant risks. Despite progress in prospective motion correction in MRI, the use of motion compensation techniques is limited by the type and amount of motion that can be compensated for, the dependency on the scanner platform, the need for pulse sequence modifications, and/or difficult setup. In this paper we introduce a novel platform-independent motion-robust MRI technique based on prospective real-time motion tracking through a miniature magnetic field sensor and retrospective super-resolution volume reconstruction. The technique is based on fast 2D scans that maintain high-quality of slices in the presence of motion but are degraded in 3D due to inter-slice motion artifacts. The sensor, conveniently attached to the subject forehead, provides real-time estimation of the motion, which in turn gives the relative location of the slice acquisitions. These location parameters are used to compensate the inter-slice motion to reconstruct an isotropic high-resolution volumetric image from slices in a super-resolution reconstruction framework. The quantitative results obtained for phantom and volunteer subject experiments in this study show the efficacy of the developed technique, which is particularly useful for motion-robust high-resolution T2-weighted imaging of newborns and pediatric subjects.

摘要

磁共振成像(MRI)对运动高度敏感;因此,目前的做法是基于在扫描过程中防止运动。对于新生儿、幼儿以及合作能力有限的患者,这通常需要完全镇静或全身麻醉,这既耗时、成本高,又存在重大风险。尽管MRI在前瞻性运动校正方面取得了进展,但运动补偿技术的应用受到可补偿的运动类型和量、对扫描仪平台的依赖性、对脉冲序列修改的需求以及/或设置困难的限制。在本文中,我们介绍了一种新颖的与平台无关的运动稳健MRI技术,该技术基于通过微型磁场传感器进行的前瞻性实时运动跟踪和回顾性超分辨率体积重建。该技术基于快速二维扫描,在存在运动的情况下能保持切片的高质量,但由于层间运动伪影,三维图像会退化。该传感器方便地附着在受试者前额上,可实时估计运动,进而给出切片采集的相对位置。这些位置参数用于补偿层间运动,以便在超分辨率重建框架中从切片重建各向同性的高分辨率体积图像。本研究中对体模和志愿者受试者实验获得的定量结果表明了所开发技术的有效性,该技术对于新生儿和儿科受试者的运动稳健高分辨率T2加权成像特别有用。

相似文献

1
Motion-robust MRI through real-time motion tracking and retrospective super-resolution volume reconstruction.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5722-5. doi: 10.1109/IEMBS.2011.6091385.
2
Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI.
IEEE Trans Med Imaging. 2010 Oct;29(10):1739-58. doi: 10.1109/TMI.2010.2051680. Epub 2010 Jun 7.
3
6
Dynamic magnetic resonance imaging of the cervical spine with high-resolution 3-dimensional T2-imaging.
Clin Neuroradiol. 2012 Mar;22(1):93-9. doi: 10.1007/s00062-011-0121-2. Epub 2011 Dec 23.
7
Motion-compensated MR valve imaging with COMB tag tracking and super-resolution enhancement.
Med Image Anal. 2007 Oct;11(5):478-91. doi: 10.1016/j.media.2007.07.002. Epub 2007 Jul 24.
8
Super-resolution reconstruction using cross-scale self-similarity in multi-slice MRI.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):123-30. doi: 10.1007/978-3-642-40760-4_16.
9
PROMO: Real-time prospective motion correction in MRI using image-based tracking.
Magn Reson Med. 2010 Jan;63(1):91-105. doi: 10.1002/mrm.22176.
10
Isotropic reconstruction of a 4-D MRI thoracic sequence using super-resolution.
Magn Reson Med. 2015 Feb;73(2):784-93. doi: 10.1002/mrm.25157. Epub 2014 Jan 29.

引用本文的文献

2
The MotoNet: A 3 Tesla MRI-Conditional EEG Net with Embedded Motion Sensors.
Sensors (Basel). 2023 Mar 28;23(7):3539. doi: 10.3390/s23073539.
3
External Hardware and Sensors, for Improved MRI.
J Magn Reson Imaging. 2023 Mar;57(3):690-705. doi: 10.1002/jmri.28472. Epub 2022 Nov 3.
4
Motion correction methods for MRS: experts' consensus recommendations.
NMR Biomed. 2021 May;34(5):e4364. doi: 10.1002/nbm.4364. Epub 2020 Jul 20.
5
Deep Predictive Motion Tracking in Magnetic Resonance Imaging: Application to Fetal Imaging.
IEEE Trans Med Imaging. 2020 Nov;39(11):3523-3534. doi: 10.1109/TMI.2020.2998600. Epub 2020 Oct 28.
6
Real-Time Deep Pose Estimation With Geodesic Loss for Image-to-Template Rigid Registration.
IEEE Trans Med Imaging. 2019 Feb;38(2):470-481. doi: 10.1109/TMI.2018.2866442. Epub 2018 Aug 21.
7
MRI use for atrial tissue characterization in arrhythmias and for EP procedure guidance.
Int J Cardiovasc Imaging. 2018 Jan;34(1):81-95. doi: 10.1007/s10554-017-1179-y. Epub 2017 Jun 7.
8
Motion-Robust Diffusion-Weighted Brain MRI Reconstruction Through Slice-Level Registration-Based Motion Tracking.
IEEE Trans Med Imaging. 2016 Oct;35(10):2258-2269. doi: 10.1109/TMI.2016.2555244.
9
Evaluation of motion and its effect on brain magnetic resonance image quality in children.
Pediatr Radiol. 2016 Nov;46(12):1728-1735. doi: 10.1007/s00247-016-3677-9. Epub 2016 Aug 3.

本文引用的文献

1
Maximum a posteriori estimation of isotropic high-resolution volumetric MRI from orthogonal thick-slice scans.
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):109-16. doi: 10.1007/978-3-642-15745-5_14.
2
Self-encoded marker for optical prospective head motion correction in MRI.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):259-66. doi: 10.1007/978-3-642-15705-9_32.
3
Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI.
IEEE Trans Med Imaging. 2010 Oct;29(10):1739-58. doi: 10.1109/TMI.2010.2051680. Epub 2010 Jun 7.
4
Spiral demystified.
Magn Reson Imaging. 2010 Jul;28(6):862-81. doi: 10.1016/j.mri.2010.03.036. Epub 2010 Apr 21.
5
Navigator accuracy requirements for prospective motion correction.
Magn Reson Med. 2010 Jan;63(1):162-70. doi: 10.1002/mrm.22191.
7
Prospective real-time correction for arbitrary head motion using active markers.
Magn Reson Med. 2009 Oct;62(4):943-54. doi: 10.1002/mrm.22082.
9
Real-time rigid body motion correction and shimming using cloverleaf navigators.
Magn Reson Med. 2006 Nov;56(5):1019-32. doi: 10.1002/mrm.21038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验