Suppr超能文献

用格兰杰因果关系分析连贯脑网络。

Analyzing coherent brain networks with Granger causality.

作者信息

Ding Mingzhou, Mo Jue, Schroeder Charles E, Wen Xiaotong

机构信息

Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Fl 32611, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5916-8. doi: 10.1109/IEMBS.2011.6091463.

Abstract

Multielectrode neurophysiological recording and functional brain imaging produce massive quantities of data. Multivariate time series analysis provides the basic framework for analyzing the patterns of neural interactions in these data. Neural interactions are directional. Being able to assess the directionality of neuronal interactions is thus a highly desired capability for understanding the cooperative nature of neural computation. Research over the last few years has identified Granger causality as a promising technique to furnish this capability. In this paper, we first introduce the concept of Granger causality and then present results from the application of this technique to multichannel local field potential data from an awake-behaving monkey.

摘要

多电极神经生理学记录和功能性脑成像会产生大量数据。多元时间序列分析为分析这些数据中的神经交互模式提供了基本框架。神经交互是有方向性的。因此,能够评估神经元交互的方向性是理解神经计算协作本质的一项非常需要的能力。过去几年的研究已将格兰杰因果关系确定为提供此能力的一种很有前景的技术。在本文中,我们首先介绍格兰杰因果关系的概念,然后展示将该技术应用于一只清醒行为猴子的多通道局部场电位数据所得到的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验