Dhamala Mukeshwar, Rangarajan Govindan, Ding Mingzhou
Department of Physics and Astronomy, Brains and Behavior Program, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA.
Neuroimage. 2008 Jun;41(2):354-62. doi: 10.1016/j.neuroimage.2008.02.020. Epub 2008 Feb 25.
Multielectrode neurophysiological recording and high-resolution neuroimaging generate multivariate data that are the basis for understanding the patterns of neural interactions. How to extract directions of information flow in brain networks from these data remains a key challenge. Research over the last few years has identified Granger causality as a statistically principled technique to furnish this capability. The estimation of Granger causality currently requires autoregressive modeling of neural data. Here, we propose a nonparametric approach based on widely used Fourier and wavelet transforms to estimate both pairwise and conditional measures of Granger causality, eliminating the need of explicit autoregressive data modeling. We demonstrate the effectiveness of this approach by applying it to synthetic data generated by network models with known connectivity and to local field potentials recorded from monkeys performing a sensorimotor task.
多电极神经生理学记录和高分辨率神经成像产生多变量数据,这些数据是理解神经交互模式的基础。如何从这些数据中提取脑网络中的信息流方向仍然是一个关键挑战。过去几年的研究已将格兰杰因果关系确定为一种具有统计学原理的技术,以提供此功能。目前,格兰杰因果关系的估计需要对神经数据进行自回归建模。在此,我们提出一种基于广泛使用的傅里叶变换和小波变换的非参数方法,以估计格兰杰因果关系的成对和条件度量,从而无需进行明确的自回归数据建模。我们将该方法应用于具有已知连通性的网络模型生成的合成数据以及从执行感觉运动任务的猴子记录的局部场电位,以此证明该方法的有效性。