Suppr超能文献

用非参数格兰杰因果关系分析脑网络中的信息流。

Analyzing information flow in brain networks with nonparametric Granger causality.

作者信息

Dhamala Mukeshwar, Rangarajan Govindan, Ding Mingzhou

机构信息

Department of Physics and Astronomy, Brains and Behavior Program, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA.

出版信息

Neuroimage. 2008 Jun;41(2):354-62. doi: 10.1016/j.neuroimage.2008.02.020. Epub 2008 Feb 25.

Abstract

Multielectrode neurophysiological recording and high-resolution neuroimaging generate multivariate data that are the basis for understanding the patterns of neural interactions. How to extract directions of information flow in brain networks from these data remains a key challenge. Research over the last few years has identified Granger causality as a statistically principled technique to furnish this capability. The estimation of Granger causality currently requires autoregressive modeling of neural data. Here, we propose a nonparametric approach based on widely used Fourier and wavelet transforms to estimate both pairwise and conditional measures of Granger causality, eliminating the need of explicit autoregressive data modeling. We demonstrate the effectiveness of this approach by applying it to synthetic data generated by network models with known connectivity and to local field potentials recorded from monkeys performing a sensorimotor task.

摘要

多电极神经生理学记录和高分辨率神经成像产生多变量数据,这些数据是理解神经交互模式的基础。如何从这些数据中提取脑网络中的信息流方向仍然是一个关键挑战。过去几年的研究已将格兰杰因果关系确定为一种具有统计学原理的技术,以提供此功能。目前,格兰杰因果关系的估计需要对神经数据进行自回归建模。在此,我们提出一种基于广泛使用的傅里叶变换和小波变换的非参数方法,以估计格兰杰因果关系的成对和条件度量,从而无需进行明确的自回归数据建模。我们将该方法应用于具有已知连通性的网络模型生成的合成数据以及从执行感觉运动任务的猴子记录的局部场电位,以此证明该方法的有效性。

相似文献

1
Analyzing information flow in brain networks with nonparametric Granger causality.
Neuroimage. 2008 Jun;41(2):354-62. doi: 10.1016/j.neuroimage.2008.02.020. Epub 2008 Feb 25.
2
Spike-field Granger causality for hybrid neural data analysis.
J Neurophysiol. 2019 Aug 1;122(2):809-822. doi: 10.1152/jn.00246.2019. Epub 2019 Jun 26.
3
Analyzing coherent brain networks with Granger causality.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5916-8. doi: 10.1109/IEMBS.2011.6091463.
4
Statistical analysis of single-trial Granger causality spectra.
Comput Math Methods Med. 2012;2012:697610. doi: 10.1155/2012/697610. Epub 2012 May 10.
5
Benchmarking nonparametric Granger causality: Robustness against downsampling and influence of spectral decomposition parameters.
Neuroimage. 2018 Dec;183:478-494. doi: 10.1016/j.neuroimage.2018.07.046. Epub 2018 Jul 20.
6
Analyzing multiple spike trains with nonparametric Granger causality.
J Comput Neurosci. 2009 Aug;27(1):55-64. doi: 10.1007/s10827-008-0126-2. Epub 2009 Jan 10.
7
Canonical Granger causality between regions of interest.
Neuroimage. 2013 Dec;83:189-99. doi: 10.1016/j.neuroimage.2013.06.056. Epub 2013 Jun 27.
8
Multivariate Granger causality: an estimation framework based on factorization of the spectral density matrix.
Philos Trans A Math Phys Eng Sci. 2013 Jul 15;371(1997):20110610. doi: 10.1098/rsta.2011.0610. Print 2013 Aug 28.
10
Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
Neuroimage. 2010 Oct 1;52(4):1444-55. doi: 10.1016/j.neuroimage.2010.05.022. Epub 2010 Jun 1.

引用本文的文献

1
A brain-wide map of neural activity during complex behaviour.
Nature. 2025 Sep;645(8079):177-191. doi: 10.1038/s41586-025-09235-0. Epub 2025 Sep 3.
2
Video game players have improved decision-making abilities and enhanced brain activities.
Neuroimage Rep. 2022 Jun 22;2(3):100112. doi: 10.1016/j.ynirp.2022.100112. eCollection 2022 Sep.
5
Human Cortico-Cerebellar Dynamics During Motor Error Processing After Stroke.
Hum Brain Mapp. 2025 Jun 1;46(8):e70227. doi: 10.1002/hbm.70227.
6
VARX Granger analysis: Models for neuroscience, physiology, sociology and econometrics.
PLoS One. 2025 Jan 9;20(1):e0313875. doi: 10.1371/journal.pone.0313875. eCollection 2025.
7
Connectivity in the Dorsal Visual Stream Is Enhanced in Action Video Game Players.
Brain Sci. 2024 Nov 28;14(12):1206. doi: 10.3390/brainsci14121206.
8
Contrasting topologies of synchronous and asynchronous functional brain networks.
Netw Neurosci. 2024 Dec 10;8(4):1491-1506. doi: 10.1162/netn_a_00413. eCollection 2024.
9
Animacy processing by distributed and interconnected networks in the temporal cortex of monkeys.
Front Behav Neurosci. 2024 Dec 13;18:1478439. doi: 10.3389/fnbeh.2024.1478439. eCollection 2024.

本文引用的文献

1
Mapping information flow in sensorimotor networks.
PLoS Comput Biol. 2006 Oct 27;2(10):e144. doi: 10.1371/journal.pcbi.0020144.
2
Large-scale visuomotor integration in the cerebral cortex.
Cereb Cortex. 2007 Jan;17(1):44-62. doi: 10.1093/cercor/bhj123. Epub 2006 Feb 1.
4
Large-scale neural models and dynamic causal modelling.
Neuroimage. 2006 May 1;30(4):1243-54. doi: 10.1016/j.neuroimage.2005.11.007. Epub 2006 Jan 4.
5
Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data.
J Neurosci Methods. 2006 Jan 30;150(2):228-37. doi: 10.1016/j.jneumeth.2005.06.011. Epub 2005 Aug 15.
6
Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality.
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9849-54. doi: 10.1073/pnas.0308538101. Epub 2004 Jun 21.
8
Neural correlates of the complexity of rhythmic finger tapping.
Neuroimage. 2003 Oct;20(2):918-26. doi: 10.1016/S1053-8119(03)00304-5.
9
Multivariate autoregressive modeling of fMRI time series.
Neuroimage. 2003 Aug;19(4):1477-91. doi: 10.1016/s1053-8119(03)00160-5.
10
Dynamic causal modelling.
Neuroimage. 2003 Aug;19(4):1273-302. doi: 10.1016/s1053-8119(03)00202-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验