Suppr超能文献

使用人工神经网络对肌电信号进行分类以控制虚拟手部假肢

Classification of EMG signals using artificial neural networks for virtual hand prosthesis control.

作者信息

Mattioli Fernando E R, Lamounier Edgard A, Cardoso Alexandre, Soares Alcimar B, Andrade Adriano O

机构信息

Virtual and Augmented Reality Research Group, Faculty of Electrical Engineering from Federal University of Uberlândia, Brazil.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7254-7. doi: 10.1109/IEMBS.2011.6091833.

Abstract

Computer-based training systems have been widely studied in the field of human rehabilitation. In health applications, Virtual Reality presents itself as an appropriate tool to simulate training environments without exposing the patients to risks. In particular, virtual prosthetic devices have been used to reduce the great mental effort needed by patients fitted with myoelectric prosthesis, during the training stage. In this paper, the application of Virtual Reality in a hand prosthesis training system is presented. To achieve this, the possibility of exploring Neural Networks in a real-time classification system is discussed. The classification technique used in this work resulted in a 95% success rate when discriminating 4 different hand movements.

摘要

基于计算机的训练系统在人类康复领域已得到广泛研究。在健康应用中,虚拟现实是一种合适的工具,可用于模拟训练环境,而不会让患者面临风险。特别是,虚拟假肢装置已被用于减少在训练阶段佩戴肌电假肢的患者所需付出的巨大脑力。本文介绍了虚拟现实在手部假肢训练系统中的应用。为此,讨论了在实时分类系统中探索神经网络的可能性。这项工作中使用的分类技术在区分4种不同手部动作时成功率达到了95%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验