Suppr超能文献

基于脑电图同步模式分类、在线再训练和后处理方案的癫痫发作预测

Seizure prediction based on classification of EEG synchronization patterns with on-line retraining and post-processing scheme.

作者信息

Chiang Cheng-Yi, Chang Nai-Fu, Chen Tung-Chien, Chen Hong-Hui, Chen Liang-Gee

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7564-9. doi: 10.1109/IEMBS.2011.6091865.

Abstract

Epilepsy is one of the most common brain disorders in the world. The spontaneous seizure onset influences the daily life of epilepsy patients. The studies on feature extraction and feature classification from Electroencephalography(EEG) signal in seizure prediction methods have shown great improvement these years. However, the variation issue of EEG signal (being awake, being asleep, severity of epilepsy, etc.) poses a fundamental difficulty in seizure prediction problem. The traditional off-line training method trains the model using a fixed training set, and expects the performance of the model to remain stable even after a long period of time, and thus suffers from variation issue. In this paper, we propose an on-line retraining method to leverage the recent input data by gradually enlarging the training set and retraining the model. Also, a simple post-processing scheme is incorporated to reduce false alarms. We develop our method based on the state of the art machine learning based classification of bivariate patterns method. The performance of the method is evaluated on Electrocorticogram(ECoG) recording from Freiburg database as well as long-term scalp EEG recording from CHB-MIT EEG Database and National Taiwan University Hospital. The proposed method achieves 74.2% sensitivity on ECoG database and 52.2% sensitivity on scalp EEG database, while improving the sensitivity of off-line training method by 29.0% and 17.4% in ECoG database and EEG database respectively. The experimental result suggests that on-line retraining can greatly improve the reliability and is promising for future seizure prediction method development.

摘要

癫痫是世界上最常见的脑部疾病之一。癫痫发作的自发性发作会影响癫痫患者的日常生活。近年来,癫痫发作预测方法中基于脑电图(EEG)信号的特征提取和特征分类研究取得了很大进展。然而,EEG信号的变化问题(如清醒、睡眠、癫痫严重程度等)给癫痫发作预测带来了根本性困难。传统的离线训练方法使用固定的训练集训练模型,并期望模型性能即使在很长一段时间后仍保持稳定,因此存在变化问题。在本文中,我们提出了一种在线再训练方法,通过逐步扩大训练集并重新训练模型来利用最近的输入数据。此外,还引入了一种简单的后处理方案以减少误报。我们基于最先进的基于机器学习的双变量模式分类方法开发了我们的方法。该方法的性能在来自弗莱堡数据库的皮质脑电图(ECoG)记录以及来自CHB - MIT脑电图数据库和台湾大学医院的长期头皮脑电图记录上进行了评估。所提出的方法在ECoG数据库上实现了74.2%的灵敏度,在头皮脑电图数据库上实现了52.2%的灵敏度,同时在ECoG数据库和脑电图数据库中分别将离线训练方法的灵敏度提高了29.0%和17.4%。实验结果表明,在线再训练可以大大提高可靠性,并且对未来癫痫发作预测方法的发展具有前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验