Suppr超能文献

CHB-MIT脑电图数据库中儿科受试者的癫痫发作自动检测——一项综述

Automated Epileptic Seizure Detection in Pediatric Subjects of CHB-MIT EEG Database-A Survey.

作者信息

Prasanna J, Subathra M S P, Mohammed Mazin Abed, Damaševičius Robertas, Sairamya Nanjappan Jothiraj, George S Thomas

机构信息

Department of Electronics and Instrumentation Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India.

Department of Robotics Engineering, Karunya Institute of Technology and Sciences, Coimbatore 641114, India.

出版信息

J Pers Med. 2021 Oct 15;11(10):1028. doi: 10.3390/jpm11101028.

Abstract

Epilepsy is a neurological disorder of the brain that causes frequent occurrence of seizures. Electroencephalography (EEG) is a tool that assists neurologists in detecting epileptic seizures caused by an unexpected flow of electrical activities in the brain. Automated detection of an epileptic seizure is a crucial task in diagnosing epilepsy which overcomes the drawback of a visual diagnosis. The dataset analyzed in this article, collected from Children's Hospital Boston (CHB) and the Massachusetts Institute of Technology (MIT), contains long-term EEG records from 24 pediatric patients. This review paper focuses on various patient-dependent and patient-independent personalized medicine approaches involved in the computer-aided diagnosis of epileptic seizures in pediatric subjects by analyzing EEG signals, thus summarizing the existing body of knowledge and opening up an enormous research area for biomedical engineers. This review paper focuses on the features of four domains, such as time, frequency, time-frequency, and nonlinear features, extracted from the EEG records, which were fed into several classifiers to classify between seizure and non-seizure EEG signals. Performance metrics such as classification accuracy, sensitivity, and specificity were examined, and challenges in automatic seizure detection using the CHB-MIT database were addressed.

摘要

癫痫是一种脑部神经紊乱疾病,会导致癫痫发作频繁发生。脑电图(EEG)是一种辅助神经科医生检测由大脑中意外电活动流引起的癫痫发作的工具。癫痫发作的自动检测是诊断癫痫的一项关键任务,它克服了视觉诊断的缺点。本文分析的数据集来自波士顿儿童医院(CHB)和麻省理工学院(MIT),包含24名儿科患者的长期脑电图记录。这篇综述论文通过分析脑电图信号,聚焦于儿科受试者癫痫发作的计算机辅助诊断中涉及的各种依赖患者和不依赖患者的个性化医学方法,从而总结现有知识体系,并为生物医学工程师开辟了一个巨大的研究领域。这篇综述论文聚焦于从脑电图记录中提取的时间、频率、时频和非线性特征这四个领域的特征,这些特征被输入到几个分类器中,以对癫痫发作和非癫痫发作的脑电图信号进行分类。研究了分类准确率、灵敏度和特异性等性能指标,并探讨了使用CHB - MIT数据库进行自动癫痫发作检测时面临的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1017/8537151/490dbdd7f276/jpm-11-01028-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验