Suppr超能文献

实时预测人体皮下葡萄糖浓度:一种通用的数据驱动方法。

Predicting human subcutaneous glucose concentration in real time: a universal data-driven approach.

作者信息

Lu Yinghui, Rajaraman Srinivasan, Ward W Kenneth, Vigersky Robert A, Reifman Jaques

机构信息

Bioinformatics Cell, TATRC, USAMRMC, Fort Detrick, MD 21702, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7945-8. doi: 10.1109/IEMBS.2011.6091959.

Abstract

Continuous glucose monitoring (CGM) devices measure and record a patient's subcutaneous glucose concentration as frequently as every minute for up to several days. When coupled with data-driven mathematical models, CGM data can be used for short-term prediction of glucose concentrations in diabetic patients. In this study, we present a real-time implementation of a previously developed offline data-driven algorithm. The implementation consists of a Kalman filter for real-time filtering of CGM data and a data-driven autoregressive model for prediction. Results based on CGM data from 3 different studies involving 34 type 1 and 2 diabetic patients suggest that the proposed real-time approach can yield ~10-min-ahead predictions with clinically acceptable accuracy and, hence, could be useful as a tool for warning against impending glucose deregulation episodes. The results further support the feasibility of "universal" glucose prediction models, where an offline-developed model based on one individual's data can be used to predict the glucose levels of any other individual in real time.

摘要

连续血糖监测(CGM)设备可每隔一分钟测量并记录患者的皮下血糖浓度,持续数天。当与数据驱动的数学模型相结合时,CGM数据可用于糖尿病患者血糖浓度的短期预测。在本研究中,我们展示了一种先前开发的离线数据驱动算法的实时实现。该实现包括用于实时过滤CGM数据的卡尔曼滤波器和用于预测的数据驱动自回归模型。基于涉及34名1型和2型糖尿病患者的3项不同研究的CGM数据的结果表明,所提出的实时方法可以以临床上可接受的准确度提前约10分钟进行预测,因此,可作为一种工具用于警告即将发生的血糖失调事件。结果进一步支持了“通用”血糖预测模型的可行性,即基于一个人数据离线开发的模型可用于实时预测任何其他人的血糖水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验