Suppr超能文献

不同频段在预测 1 型糖尿病患者皮下血糖浓度中的重要性。

The importance of different frequency bands in predicting subcutaneous glucose concentration in type 1 diabetic patients.

机构信息

Bioinformatics Cell, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA.

出版信息

IEEE Trans Biomed Eng. 2010 Aug;57(8):1839-46. doi: 10.1109/TBME.2010.2047504. Epub 2010 Apr 15.

Abstract

We investigated the relative importance and predictive power of different frequency bands of subcutaneous glucose signals for the short-term (0-50 min) forecasting of glucose concentrations in type 1 diabetic patients with data-driven autoregressive (AR) models. The study data consisted of minute-by-minute glucose signals collected from nine deidentified patients over a five-day period using continuous glucose monitoring devices. AR models were developed using single and pairwise combinations of frequency bands of the glucose signal and compared with a reference model including all bands. The results suggest that: for open-loop applications, there is no need to explicitly represent exogenous inputs, such as meals and insulin intake, in AR models; models based on a single-frequency band, with periods between 60-120 min and 150-500 min, yield good predictive power (error <3 mg/dL) for prediction horizons of up to 25 min; models based on pairs of bands produce predictions that are indistinguishable from those of the reference model as long as the 60-120 min period band is included; and AR models can be developed on signals of short length (approximately 300 min), i.e., ignoring long circadian rhythms, without any detriment in prediction accuracy. Together, these findings provide insights into efficient development of more effective and parsimonious data-driven models for short-term prediction of glucose concentrations in diabetic patients.

摘要

我们研究了不同频段的皮下葡萄糖信号对于 1 型糖尿病患者短期(0-50 分钟)血糖浓度预测的相对重要性和预测能力,使用数据驱动的自回归(AR)模型。研究数据包括使用连续血糖监测设备在五天期间从九名匿名患者中每分钟收集的血糖信号。使用单频段和双频段组合开发了 AR 模型,并与包含所有频段的参考模型进行了比较。结果表明:对于开环应用,AR 模型中无需显式表示外生输入,如进餐和胰岛素摄入;基于周期在 60-120 分钟和 150-500 分钟之间的单个频段的模型,对于预测期长达 25 分钟的预测具有很好的预测能力(误差 <3mg/dL);只要包含 60-120 分钟频段,基于双频段组合的模型可以产生与参考模型几乎无法区分的预测;AR 模型可以在较短的信号长度(约 300 分钟)上进行开发,即无需考虑长的昼夜节律,而不会对预测精度造成任何影响。这些发现为开发更有效和简约的数据驱动模型以进行糖尿病患者短期血糖浓度预测提供了深入的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验