Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
J Bacteriol. 2022 Aug 16;204(8):e0019722. doi: 10.1128/jb.00197-22. Epub 2022 Jul 26.
Radical -adenosylmethionine (SAM) enzymes catalyze an impressive variety of difficult biochemical reactions in various pathways across all domains of life. These metalloenzymes employ a reduced [4Fe-4S] cluster and SAM to generate a highly reactive 5'-deoxyadenosyl radical that is capable of initiating catalysis on otherwise unreactive substrates. Interestingly, the genomes of methanogenic archaea encode many unique radical SAM enzymes with underexplored or completely unknown functions. These organisms are responsible for the yearly production of nearly 1 billion tons of methane, a potent greenhouse gas as well as a valuable energy source. Thus, understanding the details of methanogenic metabolism and elucidating the functions of essential enzymes in these organisms can provide insights into strategies to decrease greenhouse gas emissions as well as inform advances in bioenergy production processes. This minireview provides an overview of the current state of the field regarding the functions of radical SAM enzymes in methanogens and discusses gaps in knowledge that should be addressed.
自由基-腺苷甲硫氨酸(SAM)酶在生命各个领域的各种途径中催化着令人印象深刻的各种困难生化反应。这些金属酶利用还原的[4Fe-4S]簇和 SAM 来生成高反应性的 5'-脱氧腺苷自由基,该自由基能够在原本无反应性的底物上引发催化作用。有趣的是,产甲烷古菌的基因组编码了许多具有未被充分探索或完全未知功能的独特的自由基 SAM 酶。这些生物体负责每年生产近 10 亿吨甲烷,这是一种强大的温室气体,也是一种有价值的能源。因此,了解产甲烷代谢的细节,并阐明这些生物体中必需酶的功能,可以为减少温室气体排放提供思路,也可以为生物能源生产过程的进步提供信息。这篇小综述概述了目前关于产甲烷菌中自由基 SAM 酶功能的研究现状,并讨论了应该解决的知识空白。