Suppr超能文献

非旋转刚性棒平移动力学的格子模型。

A lattice model of the translational dynamics of nonrotating rigid rods.

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305, USA.

出版信息

J Chem Phys. 2012 Jan 14;136(2):024904. doi: 10.1063/1.3673791.

Abstract

We present a lattice model of oriented, nonrotating, rigid rods in three dimensions with random walk dynamics, computer simulation results for the model, and a theory for the translational diffusion constant of the rods in the perpendicular direction, D(⊥), in the semidilute regime. The theory is based on the "tube model" of Doi-Edwards (DE) theory for the rotational diffusion constant of rods that can both translate and rotate in continuous space. The theory predicts that D(⊥) is proportional to (νL(3))(-2), where ν is the concentration of rods and L is the length of the rods, which is analogous to the Doi-Edwards scaling law for rotational diffusion. The simulations find that, as νL(3) is increased, the approach to the limit of DE scaling is slow, and the -2 power in the DE scaling law is never quite achieved even at the highest concentration (νL(3) = 200) simulated. We formulate a quantitative theory for the prefactor in the scaling relationship using only DE ideas, but it predicts a proportionality constant that is much too small. To explain this discrepancy, we modify the DE approach to obtain a more accurate estimate of the average tube radius and take into account effects of perpendicular motion of rods that are not included in the original DE theory. With these changes, the theory predicts values of D(⊥) that are in much better agreement with the simulations. We propose a new scaling relationship that fits the data very well. This relationship suggests that the DE scaling law is the correct description of the scaling for infinitely thin rods only in the limit of infinite concentration, and that corrections to the DE scaling law because of finite concentration are significant even at concentrations that are well inside the semidilute regime. The implications of these results for the DE theory of rotating rods are discussed.

摘要

我们提出了一个在三维空间中具有随机行走动力学的取向、非旋转、刚性棒的格子模型,给出了该模型的计算机模拟结果,以及在半浓相区中棒在垂直方向上的平移扩散常数 D(⊥)的理论。该理论基于 Doi-Edwards(DE)理论的“管模型”,用于可以在连续空间中既平移又旋转的棒的旋转扩散常数。该理论预测 D(⊥)与 (νL(3))(-2)成正比,其中 ν 是棒的浓度,L 是棒的长度,这与 Doi-Edwards 关于旋转扩散的标度律相似。模拟发现,随着 νL(3)的增加,接近 DE 标度的速度较慢,即使在模拟的最高浓度(νL(3)=200)下,也从未完全达到 DE 标度律中的-2 次幂。我们使用仅基于 DE 思想的定量理论来制定标度关系中的前因子,但它预测的比例常数太小。为了解释这种差异,我们修改了 DE 方法以更准确地估计平均管半径,并考虑了原始 DE 理论中未包含的棒垂直运动的影响。通过这些更改,该理论预测的 D(⊥)值与模拟值更吻合。我们提出了一个新的标度关系,非常适合数据。该关系表明,DE 标度律仅在无限浓度的极限下才是无限薄棒的正确描述,即使在半浓相区内,由于浓度有限而对 DE 标度律的修正也是显著的。讨论了这些结果对旋转棒的 DE 理论的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验