Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
J Am Chem Soc. 2012 Feb 8;134(5):2488-91. doi: 10.1021/ja2101592. Epub 2012 Jan 25.
Fluorescence resonance energy transfer (FRET)-based genetically encoded metal-ion sensors are important tools for studying metal-ion dynamics in live cells. We present a time-resolved microfluidic flow cytometer capable of characterizing the FRET-based dynamic response of metal-ion sensors in mammalian cells at a throughput of 15 cells/s with a time window encompassing a few milliseconds to a few seconds after mixing of cells with exogenous ligands. We have used the instrument to examine the cellular heterogeneity of Zn(2+) and Ca(2+) sensor FRET response amplitudes and demonstrated that the cluster maps of the Zn(2+) sensor FRET changes resolve multiple subpopulations. We have also measured the in vivo sensor response kinetics induced by changes in Zn(2+) and Ca(2+) concentrations. We observed an ∼30 fold difference between the extracellular and intracellular sensors.
荧光共振能量转移(FRET)-基于基因编码的金属离子传感器是研究活细胞中金属离子动力学的重要工具。我们提出了一种时间分辨微流控流式细胞仪,能够以 15 个细胞/s 的通量对哺乳动物细胞中基于 FRET 的金属离子传感器的动态响应进行特征描述,其时间窗口涵盖了细胞与外源性配体混合后几毫秒到几秒钟的时间。我们已经使用该仪器研究了 Zn(2+)和 Ca(2+)传感器 FRET 响应幅度的细胞异质性,并证明了 Zn(2+)传感器 FRET 变化的聚类图可解析多个亚群。我们还测量了由 Zn(2+)和 Ca(2+)浓度变化引起的体内传感器响应动力学。我们观察到细胞外和细胞内传感器之间存在约 30 倍的差异。