Suppr超能文献

在自由活动的秀丽隐杆线虫中对多个神经元进行钙成像。

Calcium imaging of multiple neurons in freely behaving C. elegans.

机构信息

Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA.

出版信息

J Neurosci Methods. 2012 Apr 30;206(1):78-82. doi: 10.1016/j.jneumeth.2012.01.002. Epub 2012 Jan 11.

Abstract

Caenorhabditis elegans is a popular model organism to study how neural circuits and genes regulate behavior. To reliably correlate circuit function with behavior, it is important to record neuronal activity in freely behaving worms. As neural circuits are composed of multiple neurons that cooperate to process information, it is highly desirable to simultaneously record the activity of multiple neurons in the circuitry. However, such a system has not been available in C. elegans. Here, we report the CARIBN II (Calcium Ratiometric Imaging of Behaving Nematodes version II) system. This system provides smoother data collection and more importantly permits simultaneous imaging of calcium transients from multiple neurons in freely behaving worms. Using this system, we imaged the activity of AVA and RIM, two key neurons in the locomotion circuitry that regulate backward movement (reversal) in locomotion behavior. We found that AVA activity increases while RIM activity decreases during the same reversal events in spontaneous locomotion, consistent with the recent report that the AVA and RIM are involved in promoting the initiation of reversals. The CARIBN II system provides a valuable tool for dissecting the neural basis of behavior in C. elegans.

摘要

秀丽隐杆线虫是一种研究神经回路和基因如何调节行为的常用模式生物。为了可靠地将回路功能与行为相关联,记录自由活动的蠕虫中的神经元活动非常重要。由于神经回路由多个神经元组成,这些神经元合作处理信息,因此同时记录回路中多个神经元的活动是非常理想的。然而,在秀丽隐杆线虫中,还没有这样的系统。在这里,我们报告了 CARIBN II(行为线虫的钙比成像版本 II)系统。该系统提供了更平滑的数据采集,更重要的是允许对自由活动的蠕虫中的多个神经元的钙瞬变进行同时成像。使用该系统,我们对 AVA 和 RIM 这两个调节运动行为中向后运动(反转)的运动回路中的关键神经元的活动进行了成像。我们发现,在自发运动中,同一反转事件中 AVA 的活性增加,而 RIM 的活性降低,这与最近的报告一致,即 AVA 和 RIM 参与促进反转的启动。CARIBN II 系统为解析秀丽隐杆线虫行为的神经基础提供了一个有价值的工具。

相似文献

1
Calcium imaging of multiple neurons in freely behaving C. elegans.
J Neurosci Methods. 2012 Apr 30;206(1):78-82. doi: 10.1016/j.jneumeth.2012.01.002. Epub 2012 Jan 11.
2
Automated imaging of neuronal activity in freely behaving Caenorhabditis elegans.
J Neurosci Methods. 2010 Mar 30;187(2):229-34. doi: 10.1016/j.jneumeth.2010.01.011. Epub 2010 Jan 21.
5
Visualizing Calcium Flux in Freely Moving Nematode Embryos.
Biophys J. 2017 May 9;112(9):1975-1983. doi: 10.1016/j.bpj.2017.02.035.
7
The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans.
Cell. 2011 Nov 11;147(4):922-33. doi: 10.1016/j.cell.2011.08.053.
8
Glia Modulate a Neuronal Circuit for Locomotion Suppression during Sleep in C. elegans.
Cell Rep. 2018 Mar 6;22(10):2575-2583. doi: 10.1016/j.celrep.2018.02.036.
10
Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E1074-81. doi: 10.1073/pnas.1507110112. Epub 2015 Dec 28.

引用本文的文献

1
Closed-loop two-photon functional imaging in a freely moving animal.
Nat Commun. 2025 Jul 1;16(1):5950. doi: 10.1038/s41467-025-60648-x.
2
Characterization of auditory sensation in .
Biophys Rep. 2024 Dec 31;10(6):351-363. doi: 10.52601/bpr.2024.240027.
3
Advanced Neural Functional Imaging in Using Lab-on-a-Chip Technology.
Micromachines (Basel). 2024 Aug 12;15(8):1027. doi: 10.3390/mi15081027.
4
CRASH2p: Closed-loop Two Photon Imaging in a Freely Moving Animal.
bioRxiv. 2024 Dec 13:2024.05.22.595209. doi: 10.1101/2024.05.22.595209.
5
Simultaneous, cortex-wide dynamics of up to 1 million neurons reveal unbounded scaling of dimensionality with neuron number.
Neuron. 2024 May 15;112(10):1694-1709.e5. doi: 10.1016/j.neuron.2024.02.011. Epub 2024 Mar 6.
7
Systematic generation of biophysically detailed models with generalization capability for non-spiking neurons.
PLoS One. 2022 May 13;17(5):e0268380. doi: 10.1371/journal.pone.0268380. eCollection 2022.
8
Calcium Imaging of Neuronal Activity under Gradually Changing Odor Stimulation in .
Bio Protoc. 2021 Jan 5;11(1):e3866. doi: 10.21769/BioProtoc.3866.
9
The G-Protein-Coupled Receptor SRX-97 Is Required for Concentration-Dependent Sensing of Benzaldehyde in .
eNeuro. 2021 Jan 28;8(1). doi: 10.1523/ENEURO.0011-20.2020. Print 2021 Jan-Feb.
10
FLP-18 Functions through the G-Protein-Coupled Receptors NPR-1 and NPR-4 to Modulate Reversal Length in .
J Neurosci. 2018 May 16;38(20):4641-4654. doi: 10.1523/JNEUROSCI.1955-17.2018. Epub 2018 Apr 30.

本文引用的文献

1
The structure of the nervous system of the nematode Caenorhabditis elegans.
Philos Trans R Soc Lond B Biol Sci. 1986 Nov 12;314(1165):1-340. doi: 10.1098/rstb.1986.0056.
3
The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans.
Cell. 2011 Nov 11;147(4):922-33. doi: 10.1016/j.cell.2011.08.053.
6
C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog.
Nat Neurosci. 2010 Jun;13(6):715-22. doi: 10.1038/nn.2540. Epub 2010 May 2.
8
Automated imaging of neuronal activity in freely behaving Caenorhabditis elegans.
J Neurosci Methods. 2010 Mar 30;187(2):229-34. doi: 10.1016/j.jneumeth.2010.01.011. Epub 2010 Jan 21.
9
Light-sensitive neurons and channels mediate phototaxis in C. elegans.
Nat Neurosci. 2008 Aug;11(8):916-22. doi: 10.1038/nn.2155. Epub 2008 Jul 6.
10
Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans.
Nature. 2007 Nov 1;450(7166):63-70. doi: 10.1038/nature06292.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验