Gengyo-Ando Keiko, Kagawa-Nagamura Yuko, Ohkura Masamichi, Fei Xianfeng, Chen Min, Hashimoto Koichi, Nakai Junichi
Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan; Brain and Body System Science Institute, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan.
Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan; Brain and Body System Science Institute, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan.
J Neurosci Methods. 2017 Jul 15;286:56-68. doi: 10.1016/j.jneumeth.2017.05.017. Epub 2017 May 12.
Real-time recording and manipulation of neural activity in freely behaving animals can greatly advance our understanding of how neural circuits regulate behavior. Ca imaging and optogenetic manipulation with optical probes are key technologies for this purpose. However, integrating the two optical approaches with behavioral analysis has been technically challenging.
Here, we developed a new imaging system, ICaST (Integrated platform for Ca imaging, Stimulation, and Tracking), which combines an automatic worm tracking system and a fast-scanning laser confocal microscope, to image neurons of interest in freely behaving C. elegans. We optimized different excitation wavelengths for the concurrent use of channelrhodopsin-2 and G-CaMP, a green fluorescent protein (GFP)-based, genetically encoded Ca indicator.
Using ICaST in conjunction with an improved G-CaMP7, we successfully achieved long-term tracking and Ca imaging of the AVA backward command interneurons while tracking the head of a moving animal. We also performed all-optical manipulation and simultaneous recording of Ca dynamics from GABAergic motor neurons in conjunction with behavior monitoring.
COMPARISON WITH EXISTING METHOD(S): Our system differs from conventional systems in that it does not require fluorescent markers for tracking and can track any part of the worm's body via bright-field imaging at high magnification. Consequently, this approach enables the long-term imaging of activity from neurons or nerve processes of interest with high spatiotemporal resolution.
Our imaging system is a powerful tool for studying the neural circuit mechanisms of C. elegans behavior and has potential for use in other small animals.
对自由活动动物的神经活动进行实时记录和操控,能够极大地推动我们对神经回路如何调节行为的理解。利用光学探针进行钙成像和光遗传学操控是实现这一目标的关键技术。然而,将这两种光学方法与行为分析相结合在技术上具有挑战性。
在此,我们开发了一种新的成像系统ICaST(钙成像、刺激和追踪集成平台),它将自动线虫追踪系统和快速扫描激光共聚焦显微镜相结合,用于对自由活动的秀丽隐杆线虫中感兴趣的神经元进行成像。我们优化了不同的激发波长,以便同时使用通道视紫红质-2和G-CaMP(一种基于绿色荧光蛋白(GFP)的基因编码钙指示剂)。
将ICaST与改进后的G-CaMP7结合使用,我们在追踪移动动物头部的同时,成功实现了对AVA反向指令中间神经元的长期追踪和钙成像。我们还结合行为监测,对GABA能运动神经元进行了全光学操控并同步记录其钙动力学。
我们的系统与传统系统的不同之处在于,它不需要荧光标记进行追踪,并且可以通过高倍明场成像追踪线虫身体的任何部位。因此,这种方法能够以高时空分辨率对感兴趣的神经元或神经突起的活动进行长期成像。
我们的成像系统是研究秀丽隐杆线虫行为神经回路机制的强大工具,并且有潜力应用于其他小型动物。