Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, and Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China.
J Neurosci. 2012 Jan 18;32(3):1043-55. doi: 10.1523/JNEUROSCI.4405-11.2012.
Dendritic spines, the actin-rich protrusions emerging from dendrites, are the locations of excitatory synapses in mammalian brains. Many molecules that regulate actin dynamics also influence the morphology and/or density of dendritic spines. Since dendritic spines are neuron-specific subcellular structures, neuron-specific proteins or signals are expected to control spinogenesis. In this report, we characterize the distribution and function of neuron-predominant cortactin-binding protein 2 (CTTNBP2) in rodents. An analysis of an Expressed Sequence Tag database revealed three splice variants of mouse CTTNBP2: short, long, and intron. Immunoblotting indicated that the short form is the dominant CTTNBP2 variant in the brain. CTTNBP2 proteins were highly concentrated at dendritic spines in cultured rat hippocampal neurons as well as in the mouse brain. Knockdown of CTTNBP2 in neurons reduced the density and size of dendritic spines. Consistent with these morphological changes, the frequencies of miniature EPSCs in CTTNBP2 knockdown neurons were lower than those in control neurons. Cortactin acts downstream of CTTNBP2 in spinogenesis, as the defects caused by CTTNBP2 knockdown were rescued by overexpression of cortactin but not expression of a CTTNBP2 mutant protein lacking the cortactin interaction. Finally, immunofluorescence staining demonstrated that, unlike cortactin, CTTNBP2 stably resided at dendritic spines even after glutamate stimulation. Fluorescence recovery after photobleaching further suggested that CTTNBP2 modulates the mobility of cortactin in neurons. CTTNBP2 may thus help to immobilize cortactin in dendritic spines and control the density of dendritic spines.
树突棘,即从树突伸出的富含肌动蛋白的突起,是哺乳动物大脑中兴奋性突触的位置。许多调节肌动蛋白动力学的分子也会影响树突棘的形态和/或密度。由于树突棘是神经元特有的亚细胞结构,预计神经元特有的蛋白质或信号将控制树突棘的生成。在本报告中,我们对啮齿动物中的神经元优势 cortactin 结合蛋白 2(CTTNBP2)进行了特征分析。对表达序列标签数据库的分析显示,小鼠 CTTNBP2 有三种剪接变体:短、长和内含子。免疫印迹分析表明,短形式是大脑中主要的 CTTNBP2 变体。CTTNBP2 蛋白在培养的大鼠海马神经元以及小鼠脑中高度集中在树突棘上。神经元中的 CTTNBP2 敲低降低了树突棘的密度和大小。与这些形态变化一致,CTTNBP2 敲低神经元中的微小 EPSC 频率低于对照神经元。Cortactin 在树突棘生成中是 CTTNBP2 的下游分子,因为 CTTNBP2 敲低引起的缺陷可以通过过表达 cortactin 而不是表达缺乏 cortactin 相互作用的 CTTNBP2 突变蛋白来挽救。最后,免疫荧光染色表明,与 cortactin 不同,CTTNBP2 在谷氨酸刺激后仍稳定存在于树突棘中。光漂白后荧光恢复进一步表明,CTTNBP2 调节神经元中 cortactin 的流动性。因此,CTTNBP2 可能有助于将 cortactin 固定在树突棘中并控制树突棘的密度。