Department of Environmental Science and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
Environ Sci Technol. 2012 Mar 6;46(5):2772-80. doi: 10.1021/es203152a. Epub 2012 Feb 10.
Geographic information systems (GIS) based techniques are cost-effective and efficient methods used by state agencies and epidemiology researchers for estimating concentration and exposure. However, budget limitations have made statewide assessments of contamination difficult, especially in groundwater media. Many studies have implemented address geocoding, land use regression, and geostatistics independently, but this is the first to examine the benefits of integrating these GIS techniques to address the need of statewide exposure assessments. A novel framework for concentration exposure is introduced that integrates address geocoding, land use regression (LUR), below detect data modeling, and Bayesian Maximum Entropy (BME). A LUR model was developed for tetrachloroethylene that accounts for point sources and flow direction. We then integrate the LUR model into the BME method as a mean trend while also modeling below detects data as a truncated Gaussian probability distribution function. We increase available PCE data 4.7 times from previously available databases through multistage geocoding. The LUR model shows significant influence of dry cleaners at short ranges. The integration of the LUR model as mean trend in BME results in a 7.5% decrease in cross validation mean square error compared to BME with a constant mean trend.
基于地理信息系统(GIS)的技术是州立机构和流行病学研究人员用于估算浓度和暴露的一种具有成本效益和高效率的方法。然而,预算限制使得全州范围的污染评估变得困难,特别是在地下水介质中。许多研究已经独立地实施了地址地理编码、土地利用回归和地统计学,但这是第一个检查整合这些 GIS 技术以满足全州暴露评估需求的好处的研究。引入了一种新的浓度暴露框架,该框架集成了地址地理编码、土地利用回归(LUR)、低于检测数据建模和贝叶斯最大熵(BME)。为四氯乙烯开发了一个考虑点源和流向的 LUR 模型。然后,我们将 LUR 模型集成到 BME 方法中作为均值趋势,同时将低于检测数据建模为截断高斯概率分布函数。我们通过多阶段地理编码将之前可用的数据库中的 PCE 数据增加了 4.7 倍。LUR 模型显示干洗店在短距离内有显著影响。与具有常数均值趋势的 BME 相比,将 LUR 模型作为 BME 中的均值趋势进行集成,会导致交叉验证均方误差降低 7.5%。