Suppr超能文献

贝叶斯最大熵模型预测采采蝇生态分布。

A Bayesian maximum entropy model for predicting tsetse ecological distributions.

机构信息

Lani Fox Geostatistical Consulting, Claremont, CA, USA.

Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Int J Health Geogr. 2023 Nov 16;22(1):31. doi: 10.1186/s12942-023-00349-0.

Abstract

BACKGROUND

African trypanosomiasis is a tsetse-borne parasitic infection that affects humans, wildlife, and domesticated animals. Tsetse flies are endemic to much of Sub-Saharan Africa and a spatial and temporal understanding of tsetse habitat can aid surveillance and support disease risk management. Problematically, current fine spatial resolution remote sensing data are delivered with a temporal lag and are relatively coarse temporal resolution (e.g., 16 days), which results in disease control models often targeting incorrect places. The goal of this study was to devise a heuristic for identifying tsetse habitat (at a fine spatial resolution) into the future and in the temporal gaps where remote sensing and proximal data fail to supply information.

METHODS

This paper introduces a generalizable and scalable open-access version of the tsetse ecological distribution (TED) model used to predict tsetse distributions across space and time, and contributes a geospatial Bayesian Maximum Entropy (BME) prediction model trained by TED output data to forecast where, herein the Morsitans group of tsetse, persist in Kenya, a method that mitigates the temporal lag problem. This model facilitates identification of tsetse habitat and provides critical information to control tsetse, mitigate the impact of trypanosomiasis on vulnerable human and animal populations, and guide disease minimization in places with ephemeral tsetse. Moreover, this BME analysis is one of the first to utilize cluster and parallel computing along with a Monte Carlo analysis to optimize BME computations. This allows for the analysis of an exceptionally large dataset (over 2 billion data points) at a finer resolution and larger spatiotemporal scale than what had previously been possible.

RESULTS

Under the most conservative assessment for Kenya, the BME kriging analysis showed an overall prediction accuracy of 74.8% (limited to the maximum suitability extent). In predicting tsetse distribution outcomes for the entire country the BME kriging analysis was 97% accurate in its forecasts.

CONCLUSIONS

This work offers a solution to the persistent temporal data gap in accurate and spatially precise rainfall predictions and the delayed processing of remotely sensed data collectively in the - 45 days past to + 180 days future temporal window. As is shown here, the BME model is a reliable alternative for forecasting future tsetse distributions to allow preplanning for tsetse control. Furthermore, this model provides guidance on disease control that would otherwise not be available. These 'big data' BME methods are particularly useful for large domain studies. Considering that past BME studies required reduction of the spatiotemporal grid to facilitate analysis. Both the GEE-TED and the BME libraries have been made open source to enable reproducibility and offer continual updates into the future as new remotely sensed data become available.

摘要

背景

非洲锥虫病是一种采采蝇传播的寄生虫感染,影响人类、野生动物和家养动物。采采蝇在撒哈拉以南非洲的大部分地区流行,对采采蝇栖息地的时空理解有助于监测和支持疾病风险管理。有问题的是,目前的精细空间分辨率遥感数据具有时间滞后,并且时间分辨率相对较粗(例如 16 天),这导致疾病控制模型通常针对错误的地点。本研究的目的是设计一种启发式方法,以便在遥感和近端数据无法提供信息的时间间隔内,对未来的采采蝇栖息地(在精细的空间分辨率下)进行识别。

方法

本文介绍了一种可推广和可扩展的开放式采采蝇生态分布(TED)模型版本,用于预测采采蝇在空间和时间上的分布,并通过 TED 输出数据训练了一个地理空间贝叶斯最大熵(BME)预测模型,用于预测肯尼亚的采采蝇(Morsitans 组)的持续存在,这是一种减轻时间滞后问题的方法。该模型有助于识别采采蝇栖息地,并提供关键信息来控制采采蝇,减轻锥虫病对脆弱的人类和动物群体的影响,并指导具有短暂采采蝇的地方减少疾病。此外,这种 BME 分析是首次利用集群和并行计算以及蒙特卡罗分析来优化 BME 计算的分析之一。这使得可以在比以前更精细的分辨率和更大的时空尺度上分析非常大的数据集(超过 20 亿个数据点)。

结果

在对肯尼亚最保守的评估下,BME 克里金分析显示总体预测准确率为 74.8%(仅限于最大适宜程度)。在预测整个国家的采采蝇分布结果时,BME 克里金分析的预测准确率为 97%。

结论

这项工作为准确和精确空间降雨预测中的持续时间数据差距以及遥感数据的延迟处理提供了一个解决方案,这些数据共同存在于过去 45 天到未来 180 天的时间窗口内。正如这里所示,BME 模型是预测未来采采蝇分布的可靠替代方案,可以提前规划采采蝇控制。此外,该模型还提供了疾病控制方面的指导,否则这些指导将无法获得。这些“大数据”BME 方法对于大型领域研究特别有用。考虑到过去的 BME 研究需要减少时空网格以方便分析。GEE-TED 和 BME 库都已开源,以实现可重复性,并随着新的遥感数据的出现提供持续更新。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd4d/10655428/b3b779b3711e/12942_2023_349_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验