Suppr超能文献

近期进化出的转录调控网络控制白念珠菌生物膜的形成。

A recently evolved transcriptional network controls biofilm development in Candida albicans.

机构信息

Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA.

出版信息

Cell. 2012 Jan 20;148(1-2):126-38. doi: 10.1016/j.cell.2011.10.048.

Abstract

A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits.

摘要

生物膜是由微生物组成的有组织的、有弹性的群体,其中单个细胞获得了一些特性,如抗药性,这些特性与悬浮培养中观察到的特性明显不同。在这里,我们描述和分析了控制致病性酵母白色念珠菌生物膜形成的转录网络,其生物膜是与医疗器械相关感染的主要来源。我们结合了遗传筛选、全基因组方法和两种体内动物模型,描述了一个控制生物膜形成的主控回路,该回路由六个转录调节剂组成,与约 1000 个靶基因形成了一个紧密编织的网络。进化分析表明,生物膜网络已经迅速进化:生物膜回路中的基因显著偏向于相对较新出现的基因,而古老的基因则相对较少。这个回路为理解白色念珠菌在哺乳动物宿主中形成生物膜的许多方面提供了一个框架。它还提供了关于复杂细胞行为如何从转录回路的进化中产生的见解。

相似文献

1
A recently evolved transcriptional network controls biofilm development in Candida albicans.
Cell. 2012 Jan 20;148(1-2):126-38. doi: 10.1016/j.cell.2011.10.048.
2
Mucosal biofilms of Candida albicans.
Curr Opin Microbiol. 2011 Aug;14(4):380-5. doi: 10.1016/j.mib.2011.06.001. Epub 2011 Jul 7.
3
Development and validation of an in vivo Candida albicans biofilm denture model.
Infect Immun. 2010 Sep;78(9):3650-9. doi: 10.1128/IAI.00480-10. Epub 2010 Jul 6.
4
A sticky situation: untangling the transcriptional network controlling biofilm development in Candida albicans.
Transcription. 2012 Nov-Dec;3(6):315-22. doi: 10.4161/trns.22281. Epub 2012 Nov 1.
5
Global Identification of Biofilm-Specific Proteolysis in Candida albicans.
mBio. 2016 Sep 13;7(5):e01514-16. doi: 10.1128/mBio.01514-16.
7
Development and characterization of an in vivo central venous catheter Candida albicans biofilm model.
Infect Immun. 2004 Oct;72(10):6023-31. doi: 10.1128/IAI.72.10.6023-6031.2004.
8
Transcription Factors Efg1 and Bcr1 Regulate Biofilm Formation and Virulence during Candida albicans-Associated Denture Stomatitis.
PLoS One. 2016 Jul 25;11(7):e0159692. doi: 10.1371/journal.pone.0159692. eCollection 2016.
9
Ribosome profiling reveals differences in global translational vs transcriptional gene expression changes during early biofilm formation.
Microbiol Spectr. 2025 Mar 4;13(3):e0219524. doi: 10.1128/spectrum.02195-24. Epub 2025 Jan 28.
10
Regulatory role of glycerol in Candida albicans biofilm formation.
mBio. 2013 Apr 9;4(2):e00637-12. doi: 10.1128/mBio.00637-12.

引用本文的文献

1
Nanoflowers: Smart Molecules for Biofilm Management.
Appl Biochem Biotechnol. 2025 Sep 3. doi: 10.1007/s12010-025-05361-7.
3
Gene dosage and protein valency impact phase separation and fungal cell fate.
PLoS Genet. 2025 Aug 8;21(8):e1011810. doi: 10.1371/journal.pgen.1011810. eCollection 2025 Aug.
4
Insights into the evolution of Candidalysin and recent developments.
Arch Microbiol. 2025 Jul 31;207(9):206. doi: 10.1007/s00203-025-04414-z.
5
Fungal Biofilm: An Overview of the Latest Nano-Strategies.
Antibiotics (Basel). 2025 Jul 17;14(7):718. doi: 10.3390/antibiotics14070718.
6
Biofilms and oral health: nanotechnology for biofilm control.
Discov Nano. 2025 Jul 16;20(1):114. doi: 10.1186/s11671-025-04299-3.
7
Antifungal resistance: Emerging mechanisms and implications (Review).
Mol Med Rep. 2025 Sep;32(3). doi: 10.3892/mmr.2025.13612. Epub 2025 Jul 11.
10
Deletion of affects iron homeostasis, azole resistance, and virulence in .
mSphere. 2025 May 27;10(5):e0015525. doi: 10.1128/msphere.00155-25. Epub 2025 Apr 23.

本文引用的文献

1
Non-adaptive origins of interactome complexity.
Nature. 2011 May 18;474(7352):502-5. doi: 10.1038/nature09992.
2
Natural selection on gene order in the genome reorganization process after whole-genome duplication of yeast.
Mol Biol Evol. 2012 Jan;29(1):71-9. doi: 10.1093/molbev/msr118. Epub 2011 May 5.
3
Control of the embryonic stem cell state.
Cell. 2011 Mar 18;144(6):940-54. doi: 10.1016/j.cell.2011.01.032.
4
The zinc cluster transcription factor Ahr1p directs Mcm1p regulation of Candida albicans adhesion.
Mol Microbiol. 2011 Feb;79(4):940-53. doi: 10.1111/j.1365-2958.2010.07504.x. Epub 2010 Dec 30.
5
Evolution of yeast noncoding RNAs reveals an alternative mechanism for widespread intron loss.
Science. 2010 Nov 5;330(6005):838-41. doi: 10.1126/science.1194554.
8
Hierarchical evolution of the bacterial sporulation network.
Curr Biol. 2010 Sep 14;20(17):R735-45. doi: 10.1016/j.cub.2010.06.031.
9
Comprehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using RNA-seq.
Genome Res. 2010 Oct;20(10):1451-8. doi: 10.1101/gr.109553.110. Epub 2010 Sep 1.
10
The transcriptomes of two heritable cell types illuminate the circuit governing their differentiation.
PLoS Genet. 2010 Aug 19;6(8):e1001070. doi: 10.1371/journal.pgen.1001070.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验