Department of Radiology, General Electric Global Research, Niskayuna, New York, USA.
Magn Reson Med. 2012 Nov;68(5):1450-7. doi: 10.1002/mrm.24143. Epub 2012 Jan 20.
We describe and evaluate a robust method for compressive sensing MRI reconstruction using an iterative soft thresholding framework that is data-driven, so that no tuning of free parameters is required. The approach described here combines a Nesterov type optimal gradient scheme for iterative update along with standard wavelet-based adaptive denoising methods, resulting in a leaner implementation compared with the nonlinear conjugate gradient method. Tests with T₂ weighted brain data and vascular 3D phase contrast data show that the image quality of reconstructions is comparable with those from an empirically tuned nonlinear conjugate gradient approach. Statistical analysis of image quality scores for multiple datasets indicates that the iterative soft thresholding approach as presented here may improve the robustness of the reconstruction and the image quality, when compared with nonlinear conjugate gradient that requires manual tuning for each dataset. A data-driven approach as illustrated in this article should improve future clinical applicability of compressive sensing image reconstruction.
我们描述并评估了一种使用迭代软阈值框架的稳健压缩感知 MRI 重建方法,该方法是数据驱动的,因此不需要调整任何自由参数。这里描述的方法结合了 Nesterov 型最优梯度方案,用于沿迭代更新,以及标准基于小波的自适应去噪方法,与非线性共轭梯度方法相比,实现更精简。使用 T₂加权脑数据和血管 3D 相位对比数据进行的测试表明,重建的图像质量与经验调谐的非线性共轭梯度方法相当。对多个数据集的图像质量评分的统计分析表明,与需要为每个数据集手动调谐的非线性共轭梯度相比,这里提出的迭代软阈值方法可以提高重建的稳健性和图像质量。本文所示的数据驱动方法应提高压缩感知图像重建的未来临床适用性。