Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA.
Department of Neurology, Emory University, Atlanta, Georgia, USA.
Magn Reson Med. 2022 Oct;88(4):1624-1642. doi: 10.1002/mrm.29303. Epub 2022 Jun 7.
Undersampling is used to reduce the scan time for high-resolution three-dimensional magnetic resonance imaging. In order to achieve better image quality and avoid manual parameter tuning, we propose a probabilistic Bayesian approach to recover map and phase images for quantitative susceptibility mapping (QSM), while allowing automatic parameter estimation from undersampled data.
Sparse prior on the wavelet coefficients of images is interpreted from a Bayesian perspective as sparsity-promoting distribution. A novel nonlinear approximate message passing (AMP) framework that incorporates a mono-exponential decay model is proposed. The parameters are treated as unknown variables and jointly estimated with image wavelet coefficients.
Undersampling takes place in the y-z plane of k-space according to the Poisson-disk pattern. Retrospective undersampling is performed to evaluate the performances of different reconstruction approaches, prospective undersampling is performed to demonstrate the feasibility of undersampling in practice.
The proposed AMP with parameter estimation (AMP-PE) approach successfully recovers maps and phase images for QSM across various undersampling rates. It is more computationally efficient, and performs better than the state-of-the-art -norm regularization (L1) approach in general, except a few cases where the L1 approach performs as well as AMP-PE.
AMP-PE achieves better performance by drawing information from both the sparse prior and the mono-exponential decay model. It does not require parameter tuning, and works with a clinical, prospective undersampling scheme where parameter tuning is often impossible or difficult due to the lack of ground-truth image.
欠采样用于缩短高分辨率三维磁共振成像的扫描时间。为了获得更好的图像质量并避免手动参数调整,我们提出了一种概率贝叶斯方法,用于从欠采样数据中自动估计参数,以恢复定量磁化率映射(QSM)的图和相位图像。
从贝叶斯的角度解释图像小波系数的稀疏先验,作为稀疏促进分布。提出了一种新的非线性近似消息传递(AMP)框架,该框架结合了单指数衰减模型。参数被视为未知变量,并与图像小波系数一起进行联合估计。
欠采样根据泊松圆盘模式在 k 空间的 y-z 平面进行。采用回顾性欠采样来评估不同重建方法的性能,采用前瞻性欠采样来证明实际中欠采样的可行性。
提出的具有参数估计(AMP-PE)的 AMP 方法成功地恢复了 QSM 的图和相位图像,适用于各种欠采样率。它比最先进的 L1 范数正则化(L1)方法更具计算效率,并且通常表现更好,除了在少数情况下 L1 方法的表现与 AMP-PE 一样好的情况。
AMP-PE 通过从稀疏先验和单指数衰减模型中提取信息来实现更好的性能。它不需要参数调整,并且可以与临床前瞻性欠采样方案一起使用,在这种方案中,由于缺乏真实图像,参数调整通常是不可能或困难的。