School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
Am J Bot. 2012 Feb;99(2):372-82. doi: 10.3732/ajb.1100395. Epub 2012 Jan 20.
Hybridization and polyploidization (allopolyploidy) are ubiquitous in the evolution of plants, but tracing the origins and subsequent evolution of the constituent genomes of allopolyploids has been challenging. Genome doubling greatly complicates genetic analyses, and this has long hindered investigation in that most allopolyploid species are "nonmodel" organisms. However, recent advances in sequencing and genomics technologies now provide unprecedented opportunities to analyze numerous genetic markers in multiple individuals in any organism.
Here we review the application of next-generation sequencing technologies to the study of three aspects of allopolyploid genome evolution: duplicated gene loss and expression in two recently formed Tragopogon allopolyploids, intergenomic interactions and chromosomal evolution in Tragopogon miscellus, and repetitive DNA evolution in Nicotiana allopolyploids.
For the first time, we can explore on a genomic scale the evolutionary processes that are ongoing in natural allopolyploids and not be restricted to well-studied crops and genetic models.
These approaches can be easily and inexpensively applied to many other plant species-making any evolutionarily provocative system a new "model" system.
杂交和多倍体化(异源多倍体)在植物进化中普遍存在,但追踪异源多倍体组成基因组的起源和随后的进化一直具有挑战性。基因组加倍极大地增加了遗传分析的复杂性,这长期以来阻碍了研究,因为大多数异源多倍体物种都是“非模式”生物。然而,测序和基因组学技术的最新进展现在为分析任何生物体中多个个体的众多遗传标记提供了前所未有的机会。
在这里,我们回顾了下一代测序技术在研究异源多倍体基因组进化的三个方面的应用:两个最近形成的 Tragopogon 异源多倍体中重复基因的丢失和表达、Tragopogon miscellus 中的种间相互作用和染色体进化,以及 Nicotiana 异源多倍体中的重复 DNA 进化。
我们首次可以在基因组范围内探索正在进行的自然异源多倍体的进化过程,而不受限于研究充分的作物和遗传模型。
这些方法可以轻松且经济地应用于许多其他植物物种,使任何具有进化启发性的系统都成为新的“模式”系统。