Suppr超能文献

一种可适应的荧光共振能量转移测定法,用于测量和筛选蛋白质-蛋白质相互作用及其抑制。

An adaptable luminescence resonance energy transfer assay for measuring and screening protein-protein interactions and their inhibition.

机构信息

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA.

出版信息

Chembiochem. 2012 Mar 5;13(4):553-8, 489. doi: 10.1002/cbic.201100710. Epub 2012 Jan 23.

Abstract

Protein-protein interactions (PPIs) are central to biological processes and represent an important class of therapeutic targets. Here we show that the interaction between FK506-binding protein 12 fused to green fluorescent protein (GFP-FKBP) and the rapamycin-binding domain of mTor fused to Escherichia coli dihydrofolate reductase (FRB-eDHFR) can be sensitively detected (signal-to-background ratio (S/B)>100) and accurately quantified within an impure cell lysate matrix using a luminescence resonance energy transfer (LRET) assay. Ascomycin-mediated inhibition of GFP-FKBP-rapamycin-FRB-eDHFR complex formation was also detected at high S/B ratio (>80) and Z'-factor (0.89). The method leverages the selective, stable binding of trimethoprim (TMP)-terbium complex conjugates to eDHFR, and time-resolved, background-free detection of the long-lifetime (∼ms) terbium-to-GFP LRET signal that indicates target binding. TMP-eDHFR labeling can be adapted to develop high-throughput screening assays and complementary, quantitative counter-screens for a wide variety of PPI targets with a broad range of affinities that may not be amenable to purification.

摘要

蛋白质-蛋白质相互作用(PPIs)是生物过程的核心,代表了一类重要的治疗靶点。在这里,我们展示了 FK506 结合蛋白 12 与绿色荧光蛋白(GFP-FKBP)融合,以及雷帕霉素结合域与大肠杆菌二氢叶酸还原酶(FRB-eDHFR)融合的相互作用可以在不纯的细胞裂解物基质中使用荧光共振能量转移(LRET)测定法进行灵敏检测(信号与背景比(S/B)>100)和准确定量。还可以在高 S/B 比(>80)和 Z'-因子(0.89)下检测到 Aspergillus 菌素介导的 GFP-FKBP-rapamycin-FRB-eDHFR 复合物形成的抑制。该方法利用三甲氧苄二氨嘧啶(TMP)-铽配合物与 eDHFR 的选择性、稳定结合,以及背景自由的铽到 GFP 的长寿命(∼ms)LRET 信号的时间分辨检测,该信号表明靶标结合。TMP-eDHFR 标记可用于开发高通量筛选测定法,以及针对各种亲和力的 PPI 靶标进行互补的、定量的反筛选,这些靶标可能不易纯化。

相似文献

2
Time-resolved luminescence resonance energy transfer imaging of protein-protein interactions in living cells.
Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13582-7. doi: 10.1073/pnas.1002025107. Epub 2010 Jul 19.
4
Lanthanide-based resonance energy transfer biosensors for live-cell applications.
Methods Enzymol. 2021;651:291-311. doi: 10.1016/bs.mie.2021.01.010. Epub 2021 Feb 23.
5
A bioorthogonal small-molecule-switch system for controlling protein function in live cells.
Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10049-55. doi: 10.1002/anie.201403463. Epub 2014 Jul 25.
7
Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays.
Proc Natl Acad Sci U S A. 1999 May 11;96(10):5394-9. doi: 10.1073/pnas.96.10.5394.
8
Chemical Dimerization-Induced Protein Condensates on Telomeres.
J Vis Exp. 2021 Apr 12(170). doi: 10.3791/62173.
9
Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.
J Biosci Bioeng. 2016 Jul;122(1):40-6. doi: 10.1016/j.jbiosc.2015.12.004. Epub 2016 Jan 5.
10
Characterization of the FKBP.rapamycin.FRB ternary complex.
J Am Chem Soc. 2005 Apr 6;127(13):4715-21. doi: 10.1021/ja043277y.

引用本文的文献

1
Biosensing Tacrolimus in Human Whole Blood by Using a Drug Receptor Fused to the Emerald Green Fluorescent Protein.
Anal Chem. 2022 Nov 29;94(47):16337-16344. doi: 10.1021/acs.analchem.2c03122. Epub 2022 Nov 16.
2
Single-Chain Lanthanide Luminescence Biosensors for Cell-Based Imaging and Screening of Protein-Protein Interactions.
iScience. 2020 Sep 6;23(9):101533. doi: 10.1016/j.isci.2020.101533. eCollection 2020 Sep 25.
3
Efficient route to pre-organized and linear polyaminopolycarboxylates: Cy-TTHA, Cy-DTPA and mono/di- reactive, -butyl protected TTHA/Cy-TTHA.
Tetrahedron Lett. 2017 Apr 12;58(15):1441-1444. doi: 10.1016/j.tetlet.2017.02.056. Epub 2017 Feb 20.
4
Multicolored, Tb³⁺-Based Antibody-Free Detection of Multiple Tyrosine Kinase Activities.
Anal Chem. 2015 Aug 4;87(15):7555-8. doi: 10.1021/acs.analchem.5b02233. Epub 2015 Jul 24.
5
Lanthanide-based imaging of protein-protein interactions in live cells.
Inorg Chem. 2014 Feb 17;53(4):1839-53. doi: 10.1021/ic4018739. Epub 2013 Oct 21.

本文引用的文献

2
Development of FRET assay into quantitative and high-throughput screening technology platforms for protein-protein interactions.
Ann Biomed Eng. 2011 Apr;39(4):1224-34. doi: 10.1007/s10439-010-0225-x. Epub 2010 Dec 21.
3
Homogeneous time-resolved fluorescence-based assay to screen for ligands targeting the growth hormone secretagogue receptor type 1a.
Anal Biochem. 2011 Jan 15;408(2):253-62. doi: 10.1016/j.ab.2010.09.030. Epub 2010 Sep 24.
4
Time-resolved luminescence resonance energy transfer imaging of protein-protein interactions in living cells.
Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13582-7. doi: 10.1073/pnas.1002025107. Epub 2010 Jul 19.
5
HTRF: A technology tailored for drug discovery - a review of theoretical aspects and recent applications.
Curr Chem Genomics. 2009 May 28;3:22-32. doi: 10.2174/1875397300903010022.
6
Luminescent terbium protein labels for time-resolved microscopy and screening.
Angew Chem Int Ed Engl. 2009;48(27):4990-2. doi: 10.1002/anie.200900858.
7
Assays for total protein.
Curr Protoc Microbiol. 2005 Oct;Appendix 3:Appendix 3A. doi: 10.1002/9780471729259.mca03as00.
8
A novel method for determination of the affinity of protein: protein interactions in homogeneous assays.
J Biomol Screen. 2008 Aug;13(7):674-82. doi: 10.1177/1087057108321086. Epub 2008 Jul 14.
10
High-throughput screening assays for the identification of chemical probes.
Nat Chem Biol. 2007 Aug;3(8):466-79. doi: 10.1038/nchembio.2007.17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验