Rajendran Megha, Yapici Engin, Miller Lawrence W
Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607, United States.
Inorg Chem. 2014 Feb 17;53(4):1839-53. doi: 10.1021/ic4018739. Epub 2013 Oct 21.
In order to deduce the molecular mechanisms of biological function, it is necessary to monitor changes in the subcellular location, activation, and interaction of proteins within living cells in real time. Förster resonance energy-transfer (FRET)-based biosensors that incorporate genetically encoded, fluorescent proteins permit high spatial resolution imaging of protein-protein interactions or protein conformational dynamics. However, a nonspecific fluorescence background often obscures small FRET signal changes, and intensity-based biosensor measurements require careful interpretation and several control experiments. These problems can be overcome by using lanthanide [Tb(III) or Eu(III)] complexes as donors and green fluorescent protein (GFP) or other conventional fluorophores as acceptors. Essential features of this approach are the long-lifetime (approximately milliseconds) luminescence of Tb(III) complexes and time-gated luminescence microscopy. This allows pulsed excitation, followed by a brief delay, which eliminates nonspecific fluorescence before the detection of Tb(III)-to-GFP emission. The challenges of intracellular delivery, selective protein labeling, and time-gated imaging of lanthanide luminescence are presented, and recent efforts to investigate the cellular uptake of lanthanide probes are reviewed. Data are presented showing that conjugation to arginine-rich, cell-penetrating peptides (CPPs) can be used as a general strategy for the cellular delivery of membrane-impermeable lanthanide complexes. A heterodimer of a luminescent Tb(III) complex, Lumi4, linked to trimethoprim and conjugated to nonaarginine via a reducible disulfide linker rapidly (∼10 min) translocates into the cytoplasm of Maden Darby canine kidney cells from the culture medium. With this reagent, the intracellular interaction between GFP fused to FK506 binding protein 12 (GFP-FKBP12) and the rapamycin binding domain of mTOR fused to Escherichia coli dihydrofolate reductase (FRB-eDHFR) were imaged at high signal-to-noise ratio with fast (1-3 s) image acquisition using a time-gated luminescence microscope. The data reviewed and presented here show that lanthanide biosensors enable fast, sensitive, and technically simple imaging of protein-protein interactions in live cells.
为了推断生物功能的分子机制,有必要实时监测活细胞内蛋白质的亚细胞定位、激活及相互作用的变化。基于Förster共振能量转移(FRET)的生物传感器,其包含基因编码的荧光蛋白,可实现蛋白质-蛋白质相互作用或蛋白质构象动力学的高空间分辨率成像。然而,非特异性荧光背景常常会掩盖微小的FRET信号变化,基于强度的生物传感器测量需要仔细解读并进行多项对照实验。通过使用镧系元素[Tb(III)或Eu(III)]配合物作为供体,绿色荧光蛋白(GFP)或其他传统荧光团作为受体,这些问题可以得到克服。该方法的基本特征是Tb(III)配合物的长寿命(约毫秒级)发光及时间门控发光显微镜技术。这允许进行脉冲激发,随后短暂延迟,从而在检测Tb(III)到GFP的发射之前消除非特异性荧光。文中介绍了细胞内递送、选择性蛋白质标记以及镧系元素发光的时间门控成像所面临的挑战,并综述了近期研究镧系元素探针细胞摄取的工作。文中给出的数据表明,与富含精氨酸的细胞穿透肽(CPP)偶联可作为一种通用策略用于细胞递送不能透过细胞膜的镧系元素配合物。一种发光的Tb(III)配合物Lumi4与甲氧苄啶相连,并通过可还原的二硫键接头与九聚精氨酸偶联,该复合物能在约10分钟内迅速从培养基转运至马-达二氏犬肾细胞的细胞质中。使用该试剂,通过时间门控发光显微镜以高信噪比和快速(1 - 3秒)图像采集,对与FK506结合蛋白12融合的GFP(GFP - FKBP12)和与大肠杆菌二氢叶酸还原酶融合的mTOR的雷帕霉素结合结构域(FRB - eDHFR)之间的细胞内相互作用进行了成像。本文综述和展示的数据表明,镧系元素生物传感器能够对活细胞中的蛋白质-蛋白质相互作用进行快速、灵敏且技术上简单的成像。