Suppr超能文献

使用相位斜率指数和多通道 ECoG 进行癫痫发作检测。

Seizure detection using the phase-slope index and multichannel ECoG.

机构信息

Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA.

出版信息

IEEE Trans Biomed Eng. 2012 Apr;59(4):1125-34. doi: 10.1109/TBME.2012.2184796. Epub 2012 Jan 18.

Abstract

Detection and analysis of epileptic seizures is of clinical and research interest. We propose a novel seizure detection and analysis scheme based on the phase-slope index (PSI) of directed influence applied to multichannel electrocorticogram data. The PSI metric identifies increases in the spatio-temporal interactions between channels that clearly distinguish seizure from interictal activity. We form a global metric of interaction between channels and compare this metric to a threshold to detect the presence of seizures. The threshold is chosen based on a moving average of recent activity to accommodate differences between patients and slow changes within each patient over time. We evaluate detection performance over a challenging population of five patients with different types of epilepsy using a total of 47 seizures in nearly 258 h of recorded data. Using a common threshold procedure, we show that our approach detects all of the seizures in four of the five patients with a false detection rate less than two per hour. A variation on the global metric is proposed to identify which channels are strong drivers of activity in each patient. These metrics are computationally efficient and suitable for real-time application.

摘要

癫痫发作的检测和分析具有临床和研究意义。我们提出了一种基于有向影响的相位斜率指数(PSI)的新型癫痫发作检测和分析方案,应用于多通道脑电数据。PSI 度量可以识别通道之间时空相互作用的增加,这些增加可以清楚地区分癫痫发作和发作间期活动。我们形成了一个通道之间相互作用的全局度量,并将该度量与一个阈值进行比较,以检测癫痫发作的存在。该阈值是基于最近活动的移动平均值选择的,以适应患者之间的差异和每个患者随时间的缓慢变化。我们使用 47 次癫痫发作和近 258 小时的记录数据,评估了 5 名具有不同类型癫痫的挑战性患者群体中的检测性能。使用常见的阈值处理程序,我们表明我们的方法可以检测到五名患者中的四名患者的所有癫痫发作,每小时的假阳性率小于两次。提出了一种全局度量的变体,以识别每个患者中哪些通道是活动的主要驱动因素。这些度量计算效率高,适合实时应用。

相似文献

1
Seizure detection using the phase-slope index and multichannel ECoG.使用相位斜率指数和多通道 ECoG 进行癫痫发作检测。
IEEE Trans Biomed Eng. 2012 Apr;59(4):1125-34. doi: 10.1109/TBME.2012.2184796. Epub 2012 Jan 18.
4
Automated single channel seizure detection in the neonate.新生儿自动单通道癫痫发作检测
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:915-8. doi: 10.1109/IEMBS.2008.4649303.
9
A novel genetic programming approach for epileptic seizure detection.一种用于癫痫发作检测的新型遗传编程方法。
Comput Methods Programs Biomed. 2016 Feb;124:2-18. doi: 10.1016/j.cmpb.2015.10.001. Epub 2015 Nov 2.

引用本文的文献

3
Automated diagnosis of EEG abnormalities with different classification techniques.采用不同分类技术的 EEG 异常自动化诊断。
Med Biol Eng Comput. 2023 Dec;61(12):3363-3385. doi: 10.1007/s11517-023-02843-w. Epub 2023 Sep 6.

本文引用的文献

1
A novel approach for computer assisted EEG monitoring in the adult ICU.一种用于成人 ICU 中计算机辅助 EEG 监测的新方法。
Clin Neurophysiol. 2011 Oct;122(10):2100-9. doi: 10.1016/j.clinph.2011.02.035. Epub 2011 Apr 6.
4
Implicit Wiener series analysis of epileptic seizure recordings.癫痫发作记录的隐式维纳级数分析
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5304-7. doi: 10.1109/IEMBS.2009.5333080.
5
Detection of seizure-associated high-frequency oscillations above 500Hz.检测与癫痫发作相关的 500Hz 以上的高频振荡。
Epilepsy Res. 2010 Feb;88(2-3):139-44. doi: 10.1016/j.eplepsyres.2009.10.008. Epub 2009 Nov 14.
7
Measuring directional coupling between EEG sources.测量脑电图源之间的方向耦合。
Neuroimage. 2008 Nov 15;43(3):497-508. doi: 10.1016/j.neuroimage.2008.07.032. Epub 2008 Jul 26.
8
Robustly estimating the flow direction of information in complex physical systems.可靠地估计复杂物理系统中信息的流动方向。
Phys Rev Lett. 2008 Jun 13;100(23):234101. doi: 10.1103/PhysRevLett.100.234101. Epub 2008 Jun 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验