School of Integrated Circuits, Shandong University, Jinan 260100, China.
Shenzhen Institute, Shandong University, Shenzhen 518057, China.
Sensors (Basel). 2023 Dec 22;24(1):77. doi: 10.3390/s24010077.
Epilepsy is a chronic neurological disease associated with abnormal neuronal activity in the brain. Seizure detection algorithms are essential in reducing the workload of medical staff reviewing electroencephalogram (EEG) records. In this work, we propose a novel automatic epileptic EEG detection method based on Stockwell transform and Transformer. First, the S-transform is applied to the original EEG segments, acquiring accurate time-frequency representations. Subsequently, the obtained time-frequency matrices are grouped into different EEG rhythm blocks and compressed as vectors in these EEG sub-bands. After that, these feature vectors are fed into the Transformer network for feature selection and classification. Moreover, a series of post-processing methods were introduced to enhance the efficiency of the system. When evaluating the public CHB-MIT database, the proposed algorithm achieved an accuracy of 96.15%, a sensitivity of 96.11%, a specificity of 96.38%, a precision of 96.33%, and an area under the curve (AUC) of 0.98 in segment-based experiments, along with a sensitivity of 96.57%, a false detection rate of 0.38/h, and a delay of 20.62 s in event-based experiments. These outstanding results demonstrate the feasibility of implementing this seizure detection method in future clinical applications.
癫痫是一种与大脑神经元异常活动相关的慢性神经系统疾病。癫痫发作检测算法对于减轻医务人员审查脑电图 (EEG) 记录的工作量至关重要。在这项工作中,我们提出了一种基于 Stockwell 变换和 Transformer 的新型自动癫痫 EEG 检测方法。首先,S 变换应用于原始 EEG 段,获取准确的时频表示。随后,获得的时频矩阵被分组到不同的 EEG 节律块中,并在这些 EEG 子带中压缩为向量。然后,这些特征向量被馈送到 Transformer 网络进行特征选择和分类。此外,引入了一系列后处理方法来提高系统的效率。在评估公共 CHB-MIT 数据库时,所提出的算法在基于段的实验中达到了 96.15%的准确率、96.11%的灵敏度、96.38%的特异性、96.33%的精度和 0.98 的曲线下面积 (AUC),在基于事件的实验中达到了 96.57%的灵敏度、0.38/h 的假阳性率和 20.62 s 的延迟。这些优异的结果证明了在未来的临床应用中实施这种癫痫发作检测方法的可行性。