Suppr超能文献

具有线性和非线性材料特性的合成声带模型的频率响应。

Frequency response of synthetic vocal fold models with linear and nonlinear material properties.

机构信息

Brigham Young University, Provo, UT, USA.

出版信息

J Speech Lang Hear Res. 2012 Oct;55(5):1395-406. doi: 10.1044/1092-4388(2012/11-0153). Epub 2012 Jan 23.

Abstract

PURPOSE

The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F0) during anterior-posterior stretching.

METHOD

Three materially linear and 3 materially nonlinear models were created and stretched up to 10 mm in 1-mm increments. Phonation onset pressure (Pon) and F0 at Pon were recorded for each length. Measurements were repeated as the models were relaxed in 1-mm increments back to their resting lengths, and tensile tests were conducted to determine the stress-strain responses of linear versus nonlinear models.

RESULTS

Nonlinear models demonstrated a more substantial frequency response than did linear models and a more predictable pattern of F0 increase with respect to increasing length (although range was inconsistent across models). Pon generally increased with increasing vocal fold length for nonlinear models, whereas for linear models, Pon decreased with increasing length.

CONCLUSION

Nonlinear synthetic models appear to more accurately represent the human vocal folds than do linear models, especially with respect to F0 response.

摘要

目的

本研究旨在创建具有非线性应力-应变特性的合成声带模型,并研究在前后拉伸过程中线性与非线性材料特性对基频(F0)的影响。

方法

创建了 3 个材料线性和 3 个材料非线性模型,并以 1mm 的增量拉伸至 10mm。记录了每个长度的起始发音压(Pon)和 Pon 时的 F0。当模型以 1mm 的增量松弛回其静息长度时,重复测量,并进行拉伸测试以确定线性与非线性模型的应力-应变响应。

结果

非线性模型表现出比线性模型更大的频率响应,并且与长度增加相关的 F0 增加模式更具可预测性(尽管在不同模型之间范围不一致)。对于非线性模型,Pon 通常随声带长度的增加而增加,而对于线性模型,Pon 随长度的增加而减小。

结论

非线性合成模型似乎比线性模型更能准确地代表人类声带,特别是在 F0 响应方面。

相似文献

1
Frequency response of synthetic vocal fold models with linear and nonlinear material properties.
J Speech Lang Hear Res. 2012 Oct;55(5):1395-406. doi: 10.1044/1092-4388(2012/11-0153). Epub 2012 Jan 23.
2
Vocal fold mass is not a useful quantity for describing F0 in vocalization.
J Speech Lang Hear Res. 2011 Apr;54(2):520-2. doi: 10.1044/1092-4388(2010/09-0284).
3
Vocal fold dynamics for frequency change.
J Voice. 2014 Jul;28(4):395-405. doi: 10.1016/j.jvoice.2013.12.005. Epub 2014 Apr 13.
4
Predictions of fundamental frequency changes during phonation based on a biomechanical model of the vocal fold lamina propria.
J Voice. 2009 May;23(3):277-82. doi: 10.1016/j.jvoice.2007.09.010. Epub 2008 Jan 11.
5
Vocal fold contact pressure in a three-dimensional body-cover phonation model.
J Acoust Soc Am. 2019 Jul;146(1):256. doi: 10.1121/1.5116138.
6
Synchronized and Desynchronized Dynamics Observed from Physical Models of the Vocal and Ventricular Folds.
J Voice. 2024 May;38(3):572-584. doi: 10.1016/j.jvoice.2021.10.023. Epub 2021 Dec 10.
7
Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
J Voice. 2015 May;29(3):265-72. doi: 10.1016/j.jvoice.2014.08.010. Epub 2015 Jan 22.
8
Biaxial mechanical properties of human vocal fold cover under vocal fold elongation.
J Acoust Soc Am. 2017 Oct;142(4):EL356. doi: 10.1121/1.5006205.
9
A computational study of the effect of vocal-fold asymmetry on phonation.
J Acoust Soc Am. 2010 Aug;128(2):818-27. doi: 10.1121/1.3458839.
10
Modal response of a computational vocal fold model with a substrate layer of adipose tissue.
J Acoust Soc Am. 2015 Feb;137(2):EL158-64. doi: 10.1121/1.4905892.

引用本文的文献

2
Synthetic, self-oscillating vocal fold models for voice production researcha).
J Acoust Soc Am. 2024 Aug 1;156(2):1283-1308. doi: 10.1121/10.0028267.
3
Flow-induced oscillations of vocal-fold replicas with tuned extensibility and material properties.
Sci Rep. 2023 Dec 19;13(1):22658. doi: 10.1038/s41598-023-48080-x.
4
Effect of Ligament Fibers on Dynamics of Synthetic, Self-Oscillating Vocal Folds in a Biomimetic Larynx Model.
Bioengineering (Basel). 2023 Sep 26;10(10):1130. doi: 10.3390/bioengineering10101130.
6
A synthetic, self-oscillating vocal fold model platform for studying augmentation injection.
J Voice. 2014 Mar;28(2):133-43. doi: 10.1016/j.jvoice.2013.10.014. Epub 2014 Jan 27.
7
Influence of embedded fibers and an epithelium layer on the glottal closure pattern in a physical vocal fold model.
J Speech Lang Hear Res. 2014 Apr 1;57(2):416-25. doi: 10.1044/2013_JSLHR-S-13-0068.
9
Vibratory responses of synthetic, self-oscillating vocal fold models.
J Acoust Soc Am. 2012 Nov;132(5):3428-38. doi: 10.1121/1.4754551.
10
Pipette aspiration applied to the characterization of nonhomogeneous, transversely isotropic materials used for vocal fold modeling.
J Mech Behav Biomed Mater. 2013 Jan;17:137-51. doi: 10.1016/j.jmbbm.2012.08.005. Epub 2012 Aug 30.

本文引用的文献

1
In vitro experimental investigation of voice production.
Curr Bioinform. 2011 Sep 1;6(3):305-322. doi: 10.2174/157489311796904637.
2
Synthetic, multi-layer, self-oscillating vocal fold model fabrication.
J Vis Exp. 2011 Dec 2(58):3498. doi: 10.3791/3498.
4
Vibration in a self-oscillating vocal fold model with left-right asymmetry in body-layer stiffness.
J Acoust Soc Am. 2010 Nov;128(5):EL279-85. doi: 10.1121/1.3492798.
6
Influence of asymmetric stiffness on the structural and aerodynamic response of synthetic vocal fold models.
J Biomech. 2009 Oct 16;42(14):2219-25. doi: 10.1016/j.jbiomech.2009.06.039. Epub 2009 Aug 6.
7
Flow-structure-acoustic interaction in a human voice model.
J Acoust Soc Am. 2009 Mar;125(3):1351-61. doi: 10.1121/1.3068444.
10
Relative contributions of collagen and elastin to elasticity of the vocal fold under tension.
Ann Biomed Eng. 2007 Aug;35(8):1471-83. doi: 10.1007/s10439-007-9314-x. Epub 2007 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验