Department of Radiology, Molecular Imaging LaboratoryAthinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Bldg 75, 13th St, Charlestown, Massachusetts 02129, USA.
Pharm Res. 2012 May;29(5):1180-8. doi: 10.1007/s11095-012-0679-7. Epub 2012 Jan 25.
Nanotechnology is evolving as a new field that has a potentially high research and clinical impact. Medicine, in particular, could benefit from nanotechnology, due to emerging applications for noninvasive imaging and therapy. One important nanotechnological platform that has shown promise includes the so-called iron oxide nanoparticles. With specific relevance to cancer therapy, iron oxide nanoparticle-based therapy represents an important alternative to conventional chemotherapy, radiation, or surgery. Iron oxide nanoparticles are usually composed of three main components: an iron core, a polymer coating, and functional moieties. The biodegradable iron core can be designed to be superparamagnetic. This is particularly important, if the nanoparticles are to be used as a contrast agent for noninvasive magnetic resonance imaging (MRI). Surrounding the iron core is generally a polymer coating, which not only serves as a protective layer but also is a very important component for transforming nanoparticles into biomedical nanotools for in vivo applications. Finally, different moieties attached to the coating serve as targeting macromolecules, therapeutics payloads, or additional imaging tags. Despite the development of several nanoparticles for biomedical applications, we believe that iron oxide nanoparticles are still the most promising platform that can transform nanotechnology into a conventional medical discipline.
纳米技术是一个新兴的领域,具有很高的研究和临床应用潜力。特别是医学领域,可以从纳米技术中受益,因为它有用于非侵入性成像和治疗的新兴应用。一个重要的纳米技术平台,包括所谓的氧化铁纳米颗粒,已经显示出了希望。氧化铁纳米颗粒为癌症治疗提供了一种重要的替代传统化疗、放疗或手术的方法。氧化铁纳米颗粒通常由三个主要部分组成:一个铁核、一个聚合物涂层和功能部分。可设计生物降解的铁核具有超顺磁性。如果将纳米颗粒用作非侵入性磁共振成像 (MRI) 的对比剂,这一点尤为重要。铁核周围通常是一层聚合物涂层,它不仅起到保护作用,而且对于将纳米颗粒转化为用于体内应用的生物医学纳米工具也是一个非常重要的组成部分。最后,附着在涂层上的不同部分作为靶向大分子、治疗有效载荷或附加成像标记。尽管已经开发出几种用于生物医学应用的纳米颗粒,但我们相信氧化铁纳米颗粒仍然是最有前途的平台,可以将纳米技术转化为常规医学学科。
Pharm Res. 2012-1-25
Acc Chem Res. 2011-4-29
Curr Med Chem. 2018-2-12
Nanomedicine (Lond). 2015-10-16
Curr Med Chem. 2009
Future Med Chem. 2010-3
Chem Soc Rev. 2013-6-21
Sens Diagn. 2024-10-1
Technol Cancer Res Treat. 2025
Int J Nanomedicine. 2024
Nanomaterials (Basel). 2024-2-5
Diagnostics (Basel). 2023-9-9
Acc Chem Res. 2011-4-29
J Control Release. 2011-1-26