Suppr超能文献

用于癌症诊断和治疗的磁性纳米颗粒。

Magnetic nanoparticles for cancer diagnosis and therapy.

机构信息

Department of Radiology, Molecular Imaging LaboratoryAthinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School, Bldg 75, 13th St, Charlestown, Massachusetts 02129, USA.

出版信息

Pharm Res. 2012 May;29(5):1180-8. doi: 10.1007/s11095-012-0679-7. Epub 2012 Jan 25.

Abstract

Nanotechnology is evolving as a new field that has a potentially high research and clinical impact. Medicine, in particular, could benefit from nanotechnology, due to emerging applications for noninvasive imaging and therapy. One important nanotechnological platform that has shown promise includes the so-called iron oxide nanoparticles. With specific relevance to cancer therapy, iron oxide nanoparticle-based therapy represents an important alternative to conventional chemotherapy, radiation, or surgery. Iron oxide nanoparticles are usually composed of three main components: an iron core, a polymer coating, and functional moieties. The biodegradable iron core can be designed to be superparamagnetic. This is particularly important, if the nanoparticles are to be used as a contrast agent for noninvasive magnetic resonance imaging (MRI). Surrounding the iron core is generally a polymer coating, which not only serves as a protective layer but also is a very important component for transforming nanoparticles into biomedical nanotools for in vivo applications. Finally, different moieties attached to the coating serve as targeting macromolecules, therapeutics payloads, or additional imaging tags. Despite the development of several nanoparticles for biomedical applications, we believe that iron oxide nanoparticles are still the most promising platform that can transform nanotechnology into a conventional medical discipline.

摘要

纳米技术是一个新兴的领域,具有很高的研究和临床应用潜力。特别是医学领域,可以从纳米技术中受益,因为它有用于非侵入性成像和治疗的新兴应用。一个重要的纳米技术平台,包括所谓的氧化铁纳米颗粒,已经显示出了希望。氧化铁纳米颗粒为癌症治疗提供了一种重要的替代传统化疗、放疗或手术的方法。氧化铁纳米颗粒通常由三个主要部分组成:一个铁核、一个聚合物涂层和功能部分。可设计生物降解的铁核具有超顺磁性。如果将纳米颗粒用作非侵入性磁共振成像 (MRI) 的对比剂,这一点尤为重要。铁核周围通常是一层聚合物涂层,它不仅起到保护作用,而且对于将纳米颗粒转化为用于体内应用的生物医学纳米工具也是一个非常重要的组成部分。最后,附着在涂层上的不同部分作为靶向大分子、治疗有效载荷或附加成像标记。尽管已经开发出几种用于生物医学应用的纳米颗粒,但我们相信氧化铁纳米颗粒仍然是最有前途的平台,可以将纳米技术转化为常规医学学科。

相似文献

1
Magnetic nanoparticles for cancer diagnosis and therapy.
Pharm Res. 2012 May;29(5):1180-8. doi: 10.1007/s11095-012-0679-7. Epub 2012 Jan 25.
2
Surface engineering of iron oxide nanoparticles for targeted cancer therapy.
Acc Chem Res. 2011 Oct 18;44(10):853-62. doi: 10.1021/ar2000277. Epub 2011 Apr 29.
3
Stabilization and functionalization of iron oxide nanoparticles for biomedical applications.
Nanoscale. 2011 Jul;3(7):2819-43. doi: 10.1039/c1nr10173k. Epub 2011 May 31.
4
New Perspectives on Biomedical Applications of Iron Oxide Nanoparticles.
Curr Med Chem. 2018 Feb 12;25(4):540-555. doi: 10.2174/0929867324666170616102922.
5
Nanomedical innovation: the SEON-concept for an improved cancer therapy with magnetic nanoparticles.
Nanomedicine (Lond). 2015;10(21):3287-304. doi: 10.2217/nnm.15.159. Epub 2015 Oct 16.
6
On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclear in vivo imaging.
Acta Biomater. 2018 Jun;73:458-469. doi: 10.1016/j.actbio.2018.04.040. Epub 2018 Apr 22.
7
Iron oxide based MR contrast agents: from chemistry to cell labeling.
Curr Med Chem. 2009;16(35):4712-27. doi: 10.2174/092986709789878256.
8
Magnetic iron oxide nanoparticles for biomedical applications.
Future Med Chem. 2010 Mar;2(3):427-49. doi: 10.4155/fmc.09.164.
10
Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer.
Chem Soc Rev. 2013 Oct 7;42(19):7816-33. doi: 10.1039/c3cs60149h. Epub 2013 Jun 21.

引用本文的文献

1
Colorimetric nano-biosensor for low-resource settings: insulin as a model biomarker.
Sens Diagn. 2024 Oct 1;3(10):1659-1671. doi: 10.1039/d4sd00197d. Epub 2024 Aug 23.
2
miR-10b as a Clinical Marker and a Therapeutic Target for Metastatic Breast Cancer.
Technol Cancer Res Treat. 2025 Jan-Dec;24:15330338251339256. doi: 10.1177/15330338251339256. Epub 2025 May 21.
3
Simultaneous therapeutic and diagnostic applications of magnetic PLGA nanoparticles loaded with doxorubicin in rabbit.
Drug Deliv Transl Res. 2025 Feb;15(2):770-785. doi: 10.1007/s13346-024-01693-9. Epub 2024 Aug 31.
4
The Advancing Role of Nanocomposites in Cancer Diagnosis and Treatment.
Int J Nanomedicine. 2024 Jun 19;19:6099-6126. doi: 10.2147/IJN.S471360. eCollection 2024.
6
Imaging of Endometriotic Lesions Using cRGD-MN Probe in a Mouse Model of Endometriosis.
Nanomaterials (Basel). 2024 Feb 5;14(3):319. doi: 10.3390/nano14030319.
7
MicroRNAs as Biomarkers and Therapeutic Targets for Acute Kidney Injury.
Diagnostics (Basel). 2023 Sep 9;13(18):2893. doi: 10.3390/diagnostics13182893.
8
MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies.
Exp Mol Med. 2023 Jul;55(7):1314-1321. doi: 10.1038/s12276-023-01050-9. Epub 2023 Jul 10.
9
Superparamagnetic iron oxide nanoparticles for their application in the human body: Influence of the surface.
Heliyon. 2023 May 25;9(6):e16487. doi: 10.1016/j.heliyon.2023.e16487. eCollection 2023 Jun.

本文引用的文献

1
Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION).
Nano Rev. 2010;1. doi: 10.3402/nano.v1i0.5358. Epub 2010 Sep 21.
3
In vitro anticancer activity of doxorubicin-loaded gelatin-coated magnetic iron oxide nanoparticles.
J Microencapsul. 2011;28(4):286-93. doi: 10.3109/02652048.2011.559286.
4
Surface engineering of iron oxide nanoparticles for targeted cancer therapy.
Acc Chem Res. 2011 Oct 18;44(10):853-62. doi: 10.1021/ar2000277. Epub 2011 Apr 29.
5
pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI.
Adv Mater. 2011 Jun 3;23(21):2436-42. doi: 10.1002/adma.201100351. Epub 2011 Apr 14.
6
Diagnostic and therapeutic imaging for cancer: therapeutic considerations and future directions.
J Surg Oncol. 2011 May 1;103(6):587-601. doi: 10.1002/jso.21805.
8
Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro.
J Control Release. 2011 May 30;152(1):76-83. doi: 10.1016/j.jconrel.2011.01.024. Epub 2011 Jan 26.
10
Noninvasive MRI-SERS imaging in living mice using an innately bimodal nanomaterial.
ACS Nano. 2011 Feb 22;5(2):1056-66. doi: 10.1021/nn102587h. Epub 2010 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验