Suppr超能文献

肿瘤学中的协变量药代动力学模型构建及其潜在的临床相关性。

Covariate pharmacokinetic model building in oncology and its potential clinical relevance.

机构信息

Department of Oncology and Hematology, Cantonal Hospital, St. Gallen, Switzerland.

出版信息

AAPS J. 2012 Mar;14(1):119-32. doi: 10.1208/s12248-012-9320-2. Epub 2012 Jan 25.

Abstract

When modeling pharmacokinetic (PK) data, identifying covariates is important in explaining interindividual variability, and thus increasing the predictive value of the model. Nonlinear mixed-effects modeling with stepwise covariate modeling is frequently used to build structural covariate models, and the most commonly used software-NONMEM-provides estimations for the fixed-effect parameters (e.g., drug clearance), interindividual and residual unidentified random effects. The aim of covariate modeling is not only to find covariates that significantly influence the population PK parameters, but also to provide dosing recommendations for a certain drug under different conditions, e.g., organ dysfunction, combination chemotherapy. A true covariate is usually seen as one that carries unique information on a structural model parameter. Covariate models have improved our understanding of the pharmacology of many anticancer drugs, including busulfan or melphalan that are part of high-dose pretransplant treatments, the antifolate methotrexate whose elimination is strongly dependent on GFR and comedication, the taxanes and tyrosine kinase inhibitors, the latter being subject of cytochrome p450 3A4 (CYP3A4) associated metabolism. The purpose of this review article is to provide a tool to help understand population covariate analysis and their potential implications for the clinic. Accordingly, several population covariate models are listed, and their clinical relevance is discussed. The target audience of this article are clinical oncologists with a special interest in clinical and mathematical pharmacology.

摘要

在对药代动力学(PK)数据进行建模时,识别协变量对于解释个体间变异性非常重要,从而提高模型的预测价值。常采用逐步协变量建模的非线性混合效应模型来构建结构协变量模型,而最常用的软件 NONMEM 则提供了固定效应参数(例如药物清除率)、个体间和未识别的残差随机效应的估计值。协变量建模的目的不仅是找到对群体 PK 参数有显著影响的协变量,还为特定药物在不同条件下(例如器官功能障碍、联合化疗)提供剂量建议。真正的协变量通常被视为对结构模型参数具有独特信息的变量。协变量模型提高了我们对许多抗癌药物药理学的理解,包括作为高剂量移植前治疗一部分的白消安或美法仑、消除强烈依赖于肾小球滤过率和合并用药的抗叶酸甲氨蝶呤、紫杉烷和酪氨酸激酶抑制剂,后者是细胞色素 p450 3A4(CYP3A4)相关代谢的底物。本文的目的是提供一种工具,帮助理解群体协变量分析及其对临床的潜在影响。因此,列出了几个群体协变量模型,并讨论了它们的临床相关性。本文的目标读者是对临床和数学药理学有特殊兴趣的临床肿瘤学家。

相似文献

引用本文的文献

7
Go beyond the limits of genetic algorithm in daily covariate selection practice.超越遗传算法在日常协变量选择实践中的局限性。
J Pharmacokinet Pharmacodyn. 2024 Apr;51(2):109-121. doi: 10.1007/s10928-023-09875-7. Epub 2023 Jul 26.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验