Suppr超能文献

收缩在诊断的经验贝叶斯估计中的重要性:问题与解决方案。

Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions.

作者信息

Savic Radojka M, Karlsson Mats O

机构信息

Division of Pharmacokinetics and Drug Therapy, Department of Pharmaceutical Biosciences, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden.

出版信息

AAPS J. 2009 Sep;11(3):558-69. doi: 10.1208/s12248-009-9133-0. Epub 2009 Aug 1.

Abstract

Empirical Bayes ("post hoc") estimates (EBEs) of etas provide modelers with diagnostics: the EBEs themselves, individual prediction (IPRED), and residual errors (individual weighted residual (IWRES)). When data are uninformative at the individual level, the EBE distribution will shrink towards zero (eta-shrinkage, quantified as 1-SD(eta (EBE))/omega), IPREDs towards the corresponding observations, and IWRES towards zero (epsilon-shrinkage, quantified as 1-SD(IWRES)). These diagnostics are widely used in pharmacokinetic (PK) pharmacodynamic (PD) modeling; we investigate here their usefulness in the presence of shrinkage. Datasets were simulated from a range of PK PD models, EBEs estimated in non-linear mixed effects modeling based on the true or a misspecified model, and desired diagnostics evaluated both qualitatively and quantitatively. Identified consequences of eta-shrinkage on EBE-based model diagnostics include non-normal and/or asymmetric distribution of EBEs with their mean values ("ETABAR") significantly different from zero, even for a correctly specified model; EBE-EBE correlations and covariate relationships may be masked, falsely induced, or the shape of the true relationship distorted. Consequences of epsilon-shrinkage included low power of IPRED and IWRES to diagnose structural and residual error model misspecification, respectively. EBE-based diagnostics should be interpreted with caution whenever substantial eta- or epsilon-shrinkage exists (usually greater than 20% to 30%). Reporting the magnitude of eta- and epsilon-shrinkage will facilitate the informed use and interpretation of EBE-based diagnostics.

摘要

etas的经验贝叶斯(“事后”)估计值(EBEs)为建模者提供了诊断信息:EBEs本身、个体预测值(IPRED)和残差(个体加权残差(IWRES))。当个体水平的数据信息不足时,EBE分布将向零收缩(eta收缩,量化为1 - SD(eta (EBE))/omega),IPRED向相应观测值收缩,IWRES向零收缩(epsilon收缩,量化为1 - SD(IWRES))。这些诊断方法在药代动力学(PK)-药效学(PD)建模中被广泛应用;我们在此研究它们在存在收缩情况下的有用性。从一系列PK - PD模型模拟数据集,基于真实模型或错误指定的模型在非线性混合效应建模中估计EBEs,并对所需诊断进行定性和定量评估。确定的eta收缩对基于EBE的模型诊断的影响包括EBEs的非正态和/或不对称分布,其平均值(“ETABAR”)显著不同于零,即使对于正确指定的模型也是如此;EBE - EBE相关性和协变量关系可能被掩盖、错误诱导或真实关系的形状被扭曲。epsilon收缩的影响包括IPRED和IWRES分别诊断结构和残差误差模型错误指定的能力较低。只要存在大量的eta或epsilon收缩(通常大于20%至30%),基于EBE的诊断就应谨慎解释。报告eta和epsilon收缩的幅度将有助于明智地使用和解释基于EBE的诊断。

相似文献

引用本文的文献

本文引用的文献

1
Evaluation of the nonparametric estimation method in NONMEM VI.NONMEM VI中无参数估计方法的评估。
Eur J Pharm Sci. 2009 Apr 11;37(1):27-35. doi: 10.1016/j.ejps.2008.12.014. Epub 2008 Dec 30.
6
Derivation of various NONMEM estimation methods.各种NONMEM估计方法的推导。
J Pharmacokinet Pharmacodyn. 2007 Oct;34(5):575-93. doi: 10.1007/s10928-007-9060-6. Epub 2007 Jul 10.
8
Diagnosing model diagnostics.诊断模型诊断
Clin Pharmacol Ther. 2007 Jul;82(1):17-20. doi: 10.1038/sj.clpt.6100241.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验