Suppr超能文献

脑科学信息学中的 BSS 和 ICA:从当前实践到开放挑战。

BSS and ICA in neuroinformatics: from current practices to open challenges.

机构信息

Adaptive Informatics Research Centre, Helsinki University of Technology, FI-00501 Helsinki, Finland.

出版信息

IEEE Rev Biomed Eng. 2008;1:50-61. doi: 10.1109/RBME.2008.2008244.

Abstract

We give a general overview of the use and possible misuse of blind source separation (BSS) and independent component analysis (ICA) in the context of neuroinformatics data processing. A clear emphasis is given to the analysis of electrophysiological recordings, as well as to functional magnetic resonance images (fMRI). Two illustrative examples include the identification and removal of artefacts in both kinds of data, and the analysis of a simple fMRI. A second part of the paper addresses a set of currently open challenges in signal processing. These include the identification and analysis of independent subspaces, the study of networks of functional brain activity, and the analysis of single-trial event-related data.

摘要

我们概述了在神经信息学数据处理的背景下,盲目源分离(BSS)和独立成分分析(ICA)的使用和可能的误用。我们特别强调了对电生理记录以及功能磁共振图像(fMRI)的分析。两个说明性的例子包括在这两种数据中识别和去除伪影,以及对简单 fMRI 的分析。本文的第二部分讨论了信号处理中当前存在的一系列挑战。这些挑战包括独立子空间的识别和分析、功能脑活动网络的研究以及单试次事件相关数据的分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验