Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
Proteins. 2012 Apr;80(4):1143-53. doi: 10.1002/prot.24015. Epub 2012 Jan 31.
The molecular basis of fructose-2,6-bisphosphatase (F-2,6-P(2)ase) of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) was investigated using the crystal structures of the human inducible form (PFKFB3) in a phospho-enzyme intermediate state (PFKFB3-P•F-6-P), in a transition state-analogous complex (PFKFB3•AlF(4)), and in a complex with pyrophosphate (PFKFB3•PP(i)) at resolutions of 2.45, 2.2, and 2.3 Å, respectively. Trapping the PFKFB3-P•F-6-P intermediate was achieved by flash cooling the crystal during the reaction, and the PFKFB3•AlF(4) and PFKFB3•PP(i) complexes were obtained by soaking. The PFKFB3•AlF(4) and PFKFB3•PP(i) complexes resulted in removing F-6-P from the catalytic pocket. With these structures, the structures of the Michaelis complex and the transition state were extrapolated. For both the PFKFB3-P formation and break down, the phosphoryl donor and the acceptor are located within ~5.1 Å, and the pivotal point 2-P is on the same line, suggesting an "in-line" transfer with a direct inversion of phosphate configuration. The geometry suggests that NE2 of His253 undergoes a nucleophilic attack to form a covalent N-P bond, breaking the 2O-P bond in the substrate. The resulting high reactivity of the leaving group, 2O of F-6-P, is neutralized by a proton donated by Glu322. Negative charges on the equatorial oxygen of the transient bipyramidal phosphorane formed during the transfer are stabilized by Arg252, His387, and Asn259. The C-terminal domain (residues 440-446) was rearranged in PFKFB3•PP(i), implying that this domain plays a critical role in binding of substrate to and release of product from the F-2,6-P(2) ase catalytic pocket. These findings provide a new insight into the understanding of the phosphoryl transfer reaction.
使用分别分辨率为 2.45、2.2 和 2.3 Å 的人诱导型形式(PFKFB3)的磷酸化酶中间态(PFKFB3-P•F-6-P)、类似过渡态的复合物(PFKFB3•AlF(4))和与焦磷酸复合物(PFKFB3•PP(i))的晶体结构,研究了 6-磷酸果糖-2-激酶/果糖-2,6-二磷酸酶(PFKFB)的果糖-2,6-二磷酸酶(F-2,6-P(2)ase)的分子基础。通过在反应过程中对晶体进行快速冷却来捕获 PFKFB3-P•F-6-P 中间态,并且通过浸泡获得 PFKFB3•AlF(4)和 PFKFB3•PP(i)复合物。PFKFB3•AlF(4)和 PFKFB3•PP(i)复合物导致 F-6-P 从催化口袋中除去。有了这些结构,就可以推断出 Michaelis 复合物和过渡态的结构。对于 PFKFB3-P 的形成和分解,磷酸供体和受体都位于约 5.1 Å 范围内,并且关键的 2-P 位于同一条线上,这表明存在具有磷酸构型直接反转的“直线”转移。该几何形状表明,His253 的 NE2 经历亲核攻击,形成共价 N-P 键,从而打破底物中的 2O-P 键。由此产生的离去基团,即 F-6-P 的 2O 的高反应性,被 Glu322 提供的质子中和。在转移过程中形成的瞬态双锥型膦烷的赤道氧上的负电荷由 Arg252、His387 和 Asn259 稳定。C 末端结构域(残基 440-446)在 PFKFB3•PP(i)中发生重排,这表明该结构域在底物结合和产物从 F-2,6-P(2) ase 催化口袋释放中起着关键作用。这些发现为理解磷酸转移反应提供了新的见解。