Hu Zhihong, Niemeijer Meindert, Abràmoft Michael D, Lee Kyungmoo, Garvin Mona K
Department of Electrical, The University of Iowa, Iowa City, IA, USA.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):33-40. doi: 10.1007/978-3-642-15711-0_5.
We present a method for automatically segmenting the blood vessels in optic nerve head (ONH) centered spectral-domain optical coherence tomography (SD-OCT) volumes, with a focus on the ability to segment the vessels in the region near the neural canal opening (NCO). The algorithm first pre-segments the NCO using a graph-theoretic approach. Oriented Gabor wavelets rotated around the center of the NCO are applied to extract features in a 2-D vessel-aimed projection image. Corresponding oriented NCO-based templates are utilized to help suppress the false positive tendency near the NCO boundary. The vessels are identified in a vessel-aimed projection image using a pixel classification algorithm. Based on the 2-D vessel profiles, 3-D vessel segmentation is performed by a triangular-mesh-based graph search approach in the SD-OCT volume. The segmentation method is trained on 5 and is tested on 10 randomly chosen independent ONH-centered SD-OCT volumes from 15 subjects with glaucoma. Using ROC analysis, for the 2-D vessel segmentation, we demonstrate an improvement over the closest previous work with an area under the curve (AUC) of 0.81 (0.72 for previously reported approach) for the region around the NCO and 0.84 for the region outside the NCO (0.81 for previously reported approach).
我们提出了一种用于自动分割以视神经乳头(ONH)为中心的光谱域光学相干断层扫描(SD - OCT)容积中的血管的方法,重点在于分割神经管开口(NCO)附近区域血管的能力。该算法首先使用基于图论的方法对NCO进行预分割。将围绕NCO中心旋转的定向Gabor小波应用于在二维血管目标投影图像中提取特征。利用相应的基于NCO的定向模板来帮助抑制NCO边界附近的假阳性趋势。使用像素分类算法在血管目标投影图像中识别血管。基于二维血管轮廓,通过基于三角网格的图搜索方法在SD - OCT容积中进行三维血管分割。该分割方法在5个样本上进行训练,并在来自15名青光眼患者的10个随机选择的独立的以ONH为中心的SD - OCT容积上进行测试。使用ROC分析,对于二维血管分割,我们证明在NCO周围区域曲线下面积(AUC)为0.81(先前报道方法为0.72),在NCO外部区域为0.84(先前报道方法为0.81),相较于之前最接近的工作有了改进。